ANTIPHAGE EFFICIENCY OF BIOCIDES AT DAIRY PLANTS
Abstract and keywords
Abstract (English):
The phagolysis of starter microbiota poses a serious threat to dairy safety and quality. Virucidal activity of commercial disinfectants in the dairy industry remains a less popular topic than their antibacterial activity. New effective phage inactivation procedures require new procedures for normal and enhanced disinfection. New biocide rotation selection methods include phage diagnostics and studies of various lactic acid bacteria bacteriophages. They also make it possible to develop more effective phage inactivation procedures for scientific laboratories. This review focuses on the feasibility of targeted preventive antiphage disinfection measures to develop new sanitization procedures for dairy plants and laboratories. The review covered articles in Russian and English registered in eLIBRARY.RU, CyberLeninka, Schoolar Google, Science Direct, and PubMed. Regarding the virucidal activity of disinfectants, the unresolved issues include evaluation of available biocides against new phages, as well as using a biocide rotation system at specific facilities. The data obtained can be used to develop targeted preventive antiphage measures in the dairy industry, to revise sanitary standards, to develop new sanitization procedures, and to design new sanitary regulations for research laboratories that work with lactic acid bacteria bacteriophages.

Keywords:
dairy products, lactic acid bacteria, bacteriophages, biocides, disinfection, peracetic acid, quaternary ammonium compounds, polyvinylpyrrolidone iodine, UV treatment
Text
Text (PDF): Read Download
References

1. Prosekov, A. Yu. Innovacionnyy menedzhment biotehnologiy zakvasochnyh kul'tur / A. Yu. Prosekov, L.A. Ostroumov // Tehnika i tehnologiya pischevyh proizvodstv. 2016. T. 43. № 4. S. 64–69. https://elibrary.ru/xelelb

2. Novoselova, M. V. Technological options for the production of lactoferrin / M. V. Novoselova, A. Yu. Prosekov // Foods and Raw Materials. 2016. Vol. 4(1). P. 90–101. https://doi.org/10.21179/2308-4057-2016-1-90-101; https://elibrary.ru/wbjzwf

3. Kurbanova, M. G. Belkovye gidrolizaty s biologicheski aktivnymi peptidami / M. G. Kurbanova, I. S. Razumnikova, A. Yu. Prosekov // Molochnaya promyshlennost'. 2010. № 9. S. 70–71. https://elibrary.ru/mvpfzb

4. Zhdanov, V. M. Mesto virusov v biosfere / V. M. Zhdanov, D. K. L'vov, A. D. Zaberezhnyy // Voprosy virusologii. 2012. № S1. S. 21–32. https://elibrary.ru/qjanrt

5. Van Regenmorte, M. H. V. Introduction to the species concept in virus Taxonomy / M. H. V. Van Regenmorte // Virus Taxonomy. Seven Report of the International Committee on Taxonomy of Viruses. Ed. by H. V. Van Regenmortel [et al.]. – Elsevier Academic Press, 2000. – R. 3–19. https://doi.org/10.1016/B978-0-12-384890-1.00001-7

6. Smykov, I. T. Daydzhest peredovyh molochnyh tehnologiy / I. T. Smykov // Molochnaya promyshlennost'. 2023. № 5. S. 25–29. https://elibrary.ru/mwsxoy

7. Lapshevich, I. Bakteriofagi - nevidimyy vrag molochnyh produktov / I. Lapshevich // Molochnaya promyshlennost'. 2020. № 10. S. 33–35. https://elibrary.ru/izpseq

8. Ganina, V. I. Issledovanie bakteriofagov, liziruyuschih molochnokislye bakterii / V. I. Ganina, N. G. Mashenceva, I. I. Ionova // Tehnika i tehnologiya pischevyh proizvodstv. 2022. T. 52, № 2. S. 361–374. https://doi.org/10.21603/2074-9414-2022-2-2371; https://elibrary.ru/vkfrcf

9. Verreault, D. Detection of airborne lactococcal bacteriophages in cheese manufacturing plants. / D. Verreault [et al.] // Applied and Environmental Microbiology. 2011. Vol. 77. P. 491–497. https://doi. org/10.1128/AEM.01391-10

10. Guglielmotti, D. M. Efficiency of physical and chemical treatments on the inactivation of dairy bacteriophages / D. M. Guglielmotti [et al.] // Frontiers in Microbiology. 2012. Vol. 2. P. 282. https://doi.org/10.3389/fmicb.2011.00282

11. Hayes, S. Biocidal Inactivation of Lactococcus lactis Bacteriophages: Efficacy and targets of commonly used sanitizers / S. Hayes [et al.] // Frontiers in Microbiology. 2017. Vol. 8. 107. https://doi.org/10.3389/fmicb.2017.00107

12. Capra, M. L. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei // M. L. Capra [et al.] // Journal of Dairy Science. 2006. Vol. 89. P. 2414–2423. https:// doi.org/10.3168/jds.S0022-0302(06)72314-1

13. Marcó, M. B. Inactivation of Dairy Bacteriophages by Thermal and Chemical Treatments / M. B. Marcó [et al.] // Viruses. 2019. Vol. 11(5). P. 480. https://doi.org/10.3390/v11050480

14. Ganina, V. I. Bakteriofagi i sposoby snizheniya ih kolichestva / V. I. Ganina // Molochnaya promyshlennost'. 2016. № 2. S. 41–43. https://www.elibrary.ru/vkzrmt

15. Suárez, V. B. Effectiveness of thermal treatments and biocides in the inactivation of Argentinian Lactococcus lactis phages / V. B. Suárez, J. A. Reinheimer // Journal of Food Protection. 2002. Vol. 65(11). P. 1756–1759. https:// doi.org/10.4315/0362-028x-65.11.1756

16. Quiberoni, A. Inactivation of Lactobacillus delbrueckii bacteriophages by heat and biocides / A. Quiberoni, D. M. Guglielmotti, J. A. Reinheimer // International Journal of Food Microbiology. 2003. Vol. 84(1). P. 51–62. https://doi.org/10.1016/s0168-1605(02)00394-x

17. Capra, M. L. Thermal and chemical resistance of Lactobacillus casei and Lactobacillus paracasei bacteriophages / M. L. Capra, A. Quiberoni, J. A. Reinheimer // Letters in Applied Microbiology. 2004. Vol. 38(6). P. 499–504. https://doi.org/10.1111/j.1472-765X.2004.01525.x

18. Briggiler M. M. Thermal, chemical, and photocatalytic inactivation of Lactobacillus plantarum bacteriophages // M. M. Briggiler [et al.] // Journal of Food Protection. 2009. Vol. 72(5). P. 1012–1019. https://doi.org/10.4315/0362-028x-72.5.1012

19. Ebrecht, A. C. Temperate and virulent Lactobacillus delbrueckii bacteriophages: Comparison of their thermal and chemical resistance / A. C. Ebrecht [et al.] // Food Microbiology. 2010. Vol. 27(4). P. 515–520. https://doi.org/10.1016/j.fm.2009.12.012

20. Mercanti, D. J. Resistance of two temperate Lactobacillus paracasei bacteriophages to high pressure homogenization, thermal treatments and chemical biocides of industrial application / D. J. Mercanti [et al.] // Food Microbiology. 2012. Vol. 29(1). P. 99–104. https://doi.org/10.1016/j.fm.2011.09.003

21. Murphy, J. Impact of thermal and biocidal treatments on lactococcal 936-type phages / J. Murphy [et al.] // International Dairy Journal. 2014. Vol. 34(1). P. 56–61. https://doi.org/10.1016/j.idairyj.2013.06.011

22. Campagna, C. Inactivation of dairy bacteriophages by commercial sanitizers and disinfectants / C. Campagna [et al.] // International Journal of Food Microbiology. 2014. Vol. 171. P. 41–47. https://doi.org/10.1016/j.ijfoodmicro.2013.11.012

23. Dement'eva, A. A. Metody ocenki kachestva dezinfektantov na osnove NUK / A. A. Dement'eva [i dr.] // Rossiyskiy zhurnal Problemy veterinarnoy sanitarii, gigieny i ekologii. 2024. № 3(51). S. 320–326. https://doi.org/10.36871/vet.san.hyg.ecol.202403001; https://elibrary.ru/uhkmzy

24. Naumenko, O. V. Influence of physico-chemical factors on phages isolated in dairy processing plants of Ukraine / O. V. Naumenko [et al.] / Mikrobiolohichnyi Zhurnal. 2020. Vol. 82(6). R. 84–93. https://doi.org/10.15407/microbiolj82.06.084

25. Suárez, V. B. Biocides for dairy bacteriophage inactivation / V. B. Suárez, D. M. Guglielmotti // Bacteriophages in dairy processing. Ed. by A. Quiberoni, J. Reinheime. – NY: Nova Science Publishers, 2012. – P. 175–197.

26. Parker, R. B. Destruction of lactic acid streptococcus Bacteriophage. By hypochlorite and quaternary ammonium compounds / R. B. Parker, P. R. Elliker / Journal of Food Protection. 1951. Vol. 14(2). P/ 52–54. https://doi.org/10.4315/0022-2747-14.2.52

27. Ly-Chatain, M. H. Antiviral effect of cationic compounds on bacteriophages / M. H. Ly-Chatain [et al.] Frontiers in Microbiology. 2013. Vol. 4. https://doi.org/10.3389/fmicb.2013.00046

28. Priya, R. I. Increased Use of Quaternary Ammonium Compounds during the SARS-CoV-2 Pandemic and Beyond: Consideration of Environmental Implications // R. I. Priya [et al.] // Environmental Science & Technology. 2020. Vol. 7. https://pubs.acs.org/doi/10.1021/acs.estlett.0c00437

29. Lee, J. Reduction in microbial survival on food contact surfaces by a spray coated polymerized quaternary ammonium compound / J. Lee, M. A. Pascal // Food Science & Nutrition. 2020. Vol. 8(5). R. 2472–2477. https://doi.org/10.1002/fsn3.153727.

30. Zhou, C. Structure–activity relationship of cationic surfactants as antimicrobial agents / C. Zhou, Y. Wang // Current Opinion in Colloid & Interface Science. 2020. Vol. 45. P. 28–43. https://doi.org/10.1016/j.cocis.2019.11.009

31. Pujato, S. A. Leuconostoc bacteriophages from blue cheese manufacture: Long-term survival, resistance to thermal treatments, high pressure homogenization and chemical biocides of industrial application / S. A. Pujato [et al.] // International Journal of Food Microbiology. 2014. Vol. 177. P. 81–88. https://doi.org/10.1016/j.ijfoodmicro.2014.02.01230.

32. Binetti, A. G. Thermal and chemical inactivation of indigenous Streptococcus thermophilus bacteriophages isolated from Argentinian dairy plants / A. G. Binetti, J. A. Reinheimer // J Journal of Food Protection. 2000. Vol. 63(4). P. 509–515. https://doi.org/10.4315/0362-028x-63.4.509

33. Avsaroglu, D. M. Hypochlorite inactivation kinetics of lactococcal bacteriophage / D. M. Avsaroglu [et al.] // LWT-Food Science and Technology. 2007. Vol. 40. P. 1369–1375. http://doi.org/10.1016/j.lwt.2006.10.006

34. Atamer, Z. Review: Elimination of bacteriophages in whey and whey products / Z. Atamer [et al.] // Frontiers in Microbiology. 2013. Vol. 4. http://doi.org/10.3389/fmicb.2013.00191

35. Park, W. J. Kimchi bacteriophages of lactic acid bacteria: population, characteristics, and their role in watery kimchi / W. J. Park, S. J. Kong, J. H. Park // Food Science and Biotechnology. 2021. Vol. 30(7). P. 949–957. https://doi.org/10.1007/s10068-021-00930-y32

36. Polyanskaya, I. S. Fagovyy monitoring na molochnom proizvodstve / I. S. Polyanskaya, V. F. Semenihina // Molochnaya promyshlennost'. 2018. № 9. S. 40–42. https://doi.org/10.31515/1019-8946-2018-9-40-41; https://elibrary.ru/yamlfb

37. Al-Jumaili, A. Review on the antimicrobial properties of Carbon nanostructures / A. Al-Jumaili [et al.] // Materials. 2017. Vol. 10(9). 1066. https://doi.org/10.3390/ma10091066

38. Brady-Estévez, A. S. SWNT-MWNT hybrid filter attains high viral removal and bacterial inactivation / A. S. Brady-Estévez [et al.] // Langmuir. 2010. Vol. 26(24). P. 19153–19158. https://doi.org/10.1021/la103776y36

39. Karczewska, M. How to Tackle Bacteriophages: The Review of Approaches with Mechanistic Insight / M. Karczewska [et al.] // International Journal of Molecular Sciences. 2023. Vol. 24(5). R. 4447. https://doi.org/10.3390/ijms24054447

40. Chmielewska-Jeznach, M. Molecular, physiological and phylogenetic traits of Lactococcus 936-type phages from distinct dairy environments / M. Chmielewska-Jeznach, J. K. Bardowski, A. K. Szczepankowska // Scientific Reports. 2018. Vol. 1(8). 12540. https://doi.org/10.1038/s41598-018-30371-3

41. Kebbi, Y. Recent advances on the application of UV-LED technology for microbial inactivation: progress and mechanism / Y. Kebbi [et al.] // Comprehensive Reviews in Food Science and Food Safety. 2020. Vol. 19. P. 3501–3527. https://doi.org/10.1111/1541-4337.1264539

42. Li, X. Evaluation survey of microbial disinfection methods in UV-LED water treatment systems / X. Li [et al.] // Science of The Total Environment. 2019 Vol. 659. P. 1415–1427. https://doi.org/10.1016/j.scitotenv.2018.12.344

43. Vitzilaiou, E. UV tolerance of Lactococcus lactis 936-type phages / E. Vitzilaiou [et al.] // International Journal of Food Microbiology Volume. 2022. Vol. 2(378). 109824. https://doi.org/10.1016/j.ijfoodmicro.2022.109824

44. Buhler, S. UV irradiation as a comparable method to thermal treatment for producing high quality stabilized milk whey / Buhler, S [et al.] // LWT-Food Science and Technology. 2019. Vol. 105. P. 127–134. https://doi.org/10.1016/j.lwt.2019.01.051

45. Michel, S. Orthogonal processing strategies to create “phage-free” whey – membrane filtration followed by thermal or ultraviolet C treatment for the reduction of Lactococcus lactis bacteriophages / S. Michel [et al.] // International Dairy Journal. 2021. Vol. 122. P105149, https://doi.org/10.1016/j.idairyj.2021.105149

46. Mahony, J. Phages of lactic acid bacteria: the role of genetics in understanding phage-host interactions and their co-evolutionary processes / J. Mahony [et al.] // Virology. 2012. Vol. 434(2). P.143–150. https://doi.org/10.1016/j.virol.2012.10.008

47. Rodriguez, R. A. Photoreactivation of bacteriophages after UV disinfection: role of genome structure and impacts of UV source / R. A. Rodriguez [et al.] // Water Research. 2014. Vol. 15(55). P. 143–149. https://doi.org/10.1016/j.watres.2014.01.065

48. Chawla, A. UV Light Application as a Mean for Disinfection / A. Chawla [et al.] // Applied Sciences. 2021. Vol. 11. 7285. https://doi.org/10.3390/app1116728546.

49. Chen, X. Thermal and chemical inactivation of Lactobacillus virulent bacteriophage / X. Chen [et al.] // Journal of Dairy Science. 2017. Vol. 100. P. 7041–7050. https://doi.org/10.3168/jds.2016-1245148

50. Szczepankowska, A. K. Bacterial starter cultures for foods / A. K. Szczepankowska // Lactic Acid Bacteria - R & D for Food, Health and Livestock Purposes. Ed. by M. Kongo. – InTech, 2013. https://doi.org/10.5772/51541

51. Kravchenko, V. N. Sposob dezinfekcii oborudovaniya na molochnyh fermah i kompleksah / V. N. Kravchenko, Yu. V. Mazaev, D. A. Panahov // Vestnik Vserossiyskogo nauchno-issledovatel'skogo instituta mehanizacii zhivotnovodstva. 2019. № 3(35). S. 118–122. https://elibrary.ru/etyurx

Login or Create
* Forgot password?