FOURIER TRANSFORM INFRARED SPECTROSCOPY COMBINED WITH CHEMOMETRICS IN GOAT MILK AUTHENTICATION
Abstract and keywords
Abstract (English):
Chemometrics improves the efficiency of the Fourier transform infrared (FTIR) spectroscopy as a method for authentication of pasteurized goat's milk in its mixes with cow's milk. The research featured mixes of two brands of goat's and cow's milk in various proportions, from 1 to 90%. The chemometric modeling involved the method of partial least squares regression (PLS) to predict the authenticity percentage based on preprocessed spectral data. A five-fold cross-check was performed to verify the PLS model. The dataset was divided into five groups, each of which was used to train and test the model. The prediction error was quantified using the standard deviation (RMSE), which measured the mean deviation of the predicted values from the actual ones. The RMSE was calculated for value, and the mean RMSE for all values served as an indicator of prediction accuracy. The method of bar graphs visualized the RMSE for each fold; the cumulative variance was explained by the PLS components. The PLS model obtained by the FTIR spectroscopy demonstrated that the mean error remained below 3–5% even in the worst scenario. The IR-Fourier spectroscopy proved to be a fast, cheap, and non-destructive authentication tool for goat's milk.

Keywords:
dairy products, cow's milk, goat's milk, chemometrics, IR-Fourier spectroscopy, milk authentication
Text
Text (PDF): Read Download
References

1. Smaoui, S. Current state of milk, dairy products, meat and meat products, eggs, fish and fishery products authentication and chemometrics / S. Smaoui [et al.] // Foods. 2023. Vol. 12(23). 4254. https://doi.org/10.3390/foods12234254

2. Sánchez-Rodríguez, R. Combined metabolomic and NIRS analyses reveal biochemical and metabolite changes in goat milk kefir under different heat treatments and fermentation times / R. Sánchez-Rodríguez [et al.] // Biomolecules. 2024. Vol. 14(7). 816. https://doi.org/10.3390/biom14070816

3. La Torre, C. Comparing nutritional values and bioactivity of kefir from different types of animal milk / C. La Torre [et al.] // Molecules. 2024. Vol. 29(1). 2710. https://doi.org/10.3390/molecules29112710

4. Chaudhary, V. Spectroscopic techniques for authentication of animal origin foods / V. Chaudhary [et al.] // Frontiers in Nutrition. 2022. Vol. 9. https://doi.org/10.3389/fnut.2022.979205

5. Wu, X. Detection of ovine or bovine milk components in commercial camel milk powder using a PCR-based method / X. Wu [et al.] // Molecules. 2022. Vol. 27(9). 3017. https://doi.org/10.3390/molecules27093017

6. Han, A. V. Optimizaciya molekulyarno-geneticheskogo metoda identifikacii molochnogo syr'ya / A. V. Han, E. G. Lazareva, O. Yu. Fomenko // Pischevaya Metainzheneriya. 2023. T. 1, № 4. S. 39–47. https://doi.org/10.37442/fme.2023.4.29; https://elibrary.ru/qqnest

7. Han, A. V. Razrabotka test-sistemy na osnove mul'tipleksnoy PCR v rezhime real'nogo vremeni dlya identifikacii produktov iz koz'ego moloka / A. V. Han [i dr.] // Pischevaya promyshlennost'. 2025. № 2. S. 11–15. https://doi.org/10.52653/PPI.2025.2.2.002; https://elibrary.ru/yfppae

8. Amelin, V. G. Analiz molochnyh produktov: opredelenie massovoy doli molochnogo zhira i vyyavlenie fal'sifikacii s pomosch'yu smartfona s prilozheniem photometrix pro / V. G. Amelin, Z. A. Chaoka, A. V. Tret'yakov // Zhurnal analiticheskoy himii. 2024. T. 79, № 2. S. 181–188. https://doi.org/10.31857/S0044450224020081; https://elibrary.ru/vxzwgf

9. Zhizhin, N. A. PCR-analiz dlya vyyavleniya primesey korov'ego moloka v produktah iz koz'ego moloka / N. A. Zhizhin // Molochnaya promyshlennost'. 2021. № 6. S. 58–59. https://doi.org/10.31515/1019-8946-2021-06-58-59; https://elibrary.ru/tpbonz

10. Frizzarin, M. Estimation of body condition score change in dairy cows in a seasonal calving pasture‐based system using routinely available milk mid‐infrared spectra and machine learning techniques / M. Frizzarin [et al.] // Journal of Dairy Science. 2023. Vol.106(6). P. 4232–4244. https://doi.org/10.3168/jds.2022-22394

11. Giannuzzi, D. In-line near-infrared analysis of milk coupled with machine learning methods for the daily prediction of blood metabolic profile in dairy cattle / D. Giannuzzi [et al.] // Scientific Reports. 2022. Vol. 12(1). P. 1–13. https://doi.org/10.1038/s41598-022-11799-0

12. Brand, W. Predicting pregnancy status from mid‐infrared spectroscopy in dairy cow milk using deep learning / W. Brand [et al.] // Journal of Dairy Science. 2021. Vol. 104(4). P. 4980–4990. https://doi.org/10.3168/jds.2020-18367

13. Titova, A. V. Razrabotka i validaciya metodiki autentifikacii kapsulirovannogo lekarstvennogo preparata nerazrushayuschim ekspress-metodom bik-spektrometrii i hemometricheskimi metodami analiza / A. V. Titova [i dr.] // Vestnik Roszdravnadzora. 2024. № 3. S. 58–71. https://elibrary.ru/hxujbq

14. Titova, A. V. Razrabotka i validaciya metodiki autentifikacii tabletok dezloratadina metodom spektrometrii v blizhney infrakrasnoy oblasti / A. V. Titova [i dr.] // Vestnik Roszdravnadzora. 2022. № 4. S. 74–80. https://elibrary.ru/akrbso

15. Kalyuzhnaya, T. V. Modelirovanie graduirovochnoy zavisimosti dlya ocenki soderzhaniya melamina v moloke s pomosch'yu IK-Fur'e-spektrometra / T. V. Kalyuzhnaya // Mezhdunarodnyy vestnik veterinarii. 2024. № 4. S. 219–224. https://doi.org/10.52419/issn2072-2419.2024.4.219; https://elibrary.ru/rusmfd

Login or Create
* Forgot password?