HIERARCHY OF COGNITIVE MODELS FOR MULTIMODAL VIRTUAL SPACE REPRESENTATION
Abstract and keywords
Abstract:
The article investigates cognitive models of virtual reality space representation as a highly immersive computer-generated environment. The study aims to identify and describe the hierarchical structure of cognitive models underlying multimodal perception and comprehension of virtual reality space, as well as to establish general and modality-specific patterns of its representation. The relevance of the study is determined by the insufficient integration of verbal and visual representations into existing research. The methodological framework is based on the cognitive modeling of experimental data obtained from 20 participants who performed perception and representation tasks within a specially designed virtual reality environment. The verbal representations were analyzed with the multimodal annotation method, and with the tools of the Semograph IS, SciVi, and AntConc, while visual representations were processed using Creative Maps Studio followed by the Python-based analysis. The results revealed the multi-level system of cognitive models. The first level comprises verbal and illustrative models reflecting linear and configurational strategies of spatial representation. The higher level is a cognitive model, integrating both modalities and identifying stable cognitive patterns, including cyclic sequences, action coupling, and a transition from general to specific. In addition, a communicative-cognitive meta-level was identified, demonstrating the influence of interaction parameters of spatial experience organization. Thus, the virtual reality space representation is interpreted as a hierarchical multimodal and communicatively conditioned system.

Keywords:
virtual reality space, cognitive models, verbal representations, visual representations, multimodal modeling, mental maps, integral cognitive model, communicative cognitive model
Text
Text (EN) (PDF): Read Download
References

1. Apresyan Yu. D. Deixis in lexicon and grammar and the naive model of the world. Semiotics and Informatics, 1986, (28): 5–33. (In Russ.) https://elibrary.ru/pvnqqd

2. Austermann C., Blanckenburg F., Blanckenburg K., Utesch T. Exploring the impact of virtual reality on presence: Findings from classroom experiment. Frontiers in Education, 2025, 10. https://doi.org/10.3389/feduc.2025.1560626

3. Belousov K., Erofeeva E., Leshchenko Y., Baranov D. "Semograph" information system as a framework for network-based science and education. Smart education and e-Learning. Smart innovation, systems and technologies: Proc. Conf., Vilamoura, 21–23 Jun 2017. 2017, 263–272. https://doi.org/10.1007/978-3-319-59451-4_26

4. Bryant D. J. A spatial representation system in humans. Psycholoquy, 1992, 3(16).

5. Chomsky N. Language and mind. 3rd ed. Cambridge: Cambridge University Press, 2006, 206. https://doi.org/10.1017/CBO9780511791222

6. Chumakov R. V., Ryabinin K. V., Belousov K. I., Duan J. Creative map studio: A platform for visual analytics of mental maps. Scientific Visualization, 2021, 13(2): 79–93. https://doi.org/10.26583/sv.13.2.06

7. Fauconnier G. Mental spaces. New York: Cambridge University Press, 1994, 240. https://doi.org/10.1017/CBO9780511624582

8. Fillmore C. J. Santa Cruz lectures on deixis: 1971. Bloomington: Indiana University Linguistics Club, 1975, 217–306.

9. Grudeva E. A. Mental structures in the linguistic-cognitive paradigm. International Research Journal, 2021, (7-3): 33–37. (In Russ.) https://doi.org/10.23670/IRJ.2021.109.7.073

10. Kushnir A. B., Mikhailova E. S., Gerasimenko N. Yu. The influence of sex and cognitive style on eye movement patterns during map navigation. Experimental Psychology, 2024, 17(2): 10–28. (In Russ.) https://doi.org/10.17759/exppsy.2024170201

11. Lansdale M. W. Modeling memory for absolute location. Psychological review, 1998, 105(2): 351–378. https://doi.org/10.1037/0033-295x.105.2.351

12. Lansdale M. W., Humphries J. E., Flynn V. Cognitive operations on space and their impact on the precision of location memory. Journal of Experimental Psychology. Learning, Memory, and Cognition, 2013, 39(5): 1501–1519. https://doi.org/10.1037/a0031838

13. Levinson S. C. Space in language and cognition. Cambridge: Cambridge University Press, 2003, 389. https://doi.org/10.1017/CBO9780511613609

14. Luchinkina I. S. Frames and representations as cognitive markers of personal behavior in the digital environment. The Herald of South-Ural state Humanities-Pedagogical University, 2024, (4): 296–314. (In Russ.) https://doi.org/10.25588/CSPU.2024.182.4.016

15. Mandler J. M., Pagán Cánovas C. On defining image schemas. Language and Cognition, 2014, 6(4): 510–532. https://doi.org/10.1017/langcog.2014.14

16. Ozhereleva T. A. Cognitive representation. ITNOU: Information Technologies in Science, Education and Management, 2019, (3): 9–17. (In Russ.) https://elibrary.ru/amcpeg

17. Peixoto B., Pinto R., Melo M., Cabral L., Bessa M. Immersive virtual reality for foreign language education: A PRISMA systematic review. IEEE Access, 2021, 9: 48952–48962. https://doi.org/10.1109/ACCESS.2021.3068858

18. Povetkina Yu. V. Modeling as method of linguistic research. Philology. Theory & Practice, 2012, (6): 132–136. (In Russ.) https://elibrary.ru/pehsrx

19. Rocabado F., Muntini L., Jubran O. F., Lachmann T., Duñabeitia J. A. Transforming language research from classic desktops to virtual environments. Scientific Reports, 2025, 15(1). https://doi.org/10.1038/s41598-025-08319-1

20. Ryabinin K. V., Baranov D. A., Belousov K. I. Integration of Semograph information system and SciVi visualizer for solving the tasks of lingual content expert analysis. Scientific Visualization, 2017, 9(4): 67–77. (In Russ.) https://doi.org/10.26583/sv.9.4.07

21. Saveleva O. A., Menshikova G. Ya., Bugriy G. S. Accuracy of the formation of spatial representations of dynamic scenes in working memory. Experimental Psychology, 2023, 16(4): 57–74. (In Russ.) https://doi.org/10.17759/exppsy.2023160404

22. Schütze U. Virtual reality, artificial intelligence, and language learning: The need for attention. Amsterdam-Philadelphia: John Benjamins, 2024, XV, 146. https://doi.org/10.1075/bpa.19

23. Slater M., Banakou D., Beacco A., Gallego J., Macia-Varela F., Oliva R. A separate reality: An update on place illusion and plausibility in virtual reality. Frontiers Virtual Reality and Human Behaviour, 2022, 3. https://doi.org/10.3389/frvir.2022.914392

24. Stea D. Image and environment: Cognitive mapping and spatial behavior. New York: Routledge, 2017, 439. https://doi.org/10.4324/9780203789155

25. Sun R. The Cambridge handbook of computational psychology. Cambridge: Cambridge University Press, 2008, 768. https://doi.org/10.1017/CBO9780511816772

26. Taleski A. Models of deictic and communicative behavior of a speaker in virtual reality. Moscow: Flinta, 2024, 220. (In Russ.) https://elibrary.ru/eoskyp

27. Taleski A., Burlaka A. Y. Dynamic aspects of multimodal representation of virtual space. Socio- and Psycholinguistic Studies, 2025, (13): 21–33. (In Russ.) https://elibrary.ru/bhndng

28. Tversky B. Cognitive maps, cognitive collages, and spatial mental models. Spatial information theory: A theoretical basis for GIS. Lecture notes in computer science: Proc. Conf., Marciana Marina, Elba Island, 19–22 Sep 1993. 1993, vol. 716, 14–24. https://doi.org/10.1007/3-540-57207-4_2

29. Velichkovsky B. B., Gusev A. N., Vinogradova V. F., Arbekova O. A. Cognitive control and a sense of presence in virtual environments. Experimental Psychology, 2016, 9(1): 5–20. (In Russ.) https://doi.org/10.17759/exppsy.2016090102

30. Wang S. The fluid construction of spatial concepts in infancy. Human Development, 2017, 60(4): 186–192. https://doi.org/10.1159/000480339

31. Zelyanskaya N. L., Baranov D. A., Belousov K. I. Naive geography and topology of geomental maps. Socio- and Psycholinguistic Studies, 2016, (4): 126–136. (In Russ.) https://elibrary.ru/xxbxaj


Login or Create
* Forgot password?