ENCAPSULATED POLYPHENOLS IN FUNCTIONAL FOOD PRODUCTION
Abstract and keywords
Abstract (English):
Polyphenols are present as nutrient components in many functional food formulations. However, their bioavailability is quite low, and they tend to degrade under extreme technological conditions, e.g., heating, pH, etc. Moreover, polyphenols are known for their specific bitter taste. As a result, a large amount of polyphenols spoils the sensory properties of the finished product. Encapsulation seems a prospective solution to this problem. This article provides a comprehensive review of scientific publications on various methods of polyphenol encapsulation. The review covered publications registered in PubMed, Google Scholar, ResearchGate, Elsevier, eLIBRARY.RU, and Cyberleninka in 2002–2023 with a focus on original research articles published after 2012. The search involved such keywords as polyphenols, encapsulation, flavonoids, delivery systems, and functional products. Encapsulating materials are made of organic or inorganic substances, as well as of their combinations. Mineral salts delay the contact between polyphenols and taste buds. However, they are not resistant enough to gastric juice. In this respect, organic matrices are more effective. Carbohydrates protect active molecules from degradation in the stomach. Liposomes increase the bioavailability of polyphenols. Milk or whey proteins also proved quite effective for a number of reasons. First, they mask the astringent taste, which makes it possible to include more polyphenols in functional food formulations. Second, the resulting product is fortified with valuable proteins and essential amino acids. Third, high concentrations of polyphenols possess enough antioxidant properties to increase the shelf-life. Polyphenol encapsulation is an effective method of functional product design, especially in the sphere of foods made for dietary nutrition, sports, preventive diets, etc.

Keywords:
Polyphenols, biological activity, encapsulation, functional ingredients
Text
Text (PDF): Read Download
References

1. Blando F, Calabriso N, Berland H, Maiorano G, Gerardi C, Carluccio M, et al. Radical scavenging and anti-inflammatory activities of representative anthocyanin groupings from pigment-rich fruits and vegetables. International Journal of Molecular Sciences. 2018;19(1). https://doi.org/10.3390/ijms19010169

2. Tian L, Tan Y, Chen G, Wang G, Sun J, Ou S, et al. Metabolism of anthocyanins and consequent effects on the gut microbiota. Critical Reviews in Food Science and Nutrition. 2019;59(6):982–991. https://doi.org/10.1080/10408398.2018.1533517

3. Tena N, Martín J, Asuero AG. State of the art of anthocyanins: Antioxidant activity, sources, bioavailability, and therapeutic effect in human health. Antioxidants. 2020;9(5). https://doi.org/10.3390/antiox9050451

4. Bendokas V, Stanys V, Mažeikienė I, Trumbeckaite S, Baniene R, Liobikas J. Anthocyanins: From the field to the antioxidants in the body. Antioxidants. 2020;9(9). https://doi.org/10.3390/antiox9090819

5. Fernández-Fernández AM, Dellacassa E, Nardin T, Larcher R, Ibañez C, Terán D, et al. Tannat grape skin: A feasible ingredient for the formulation of snacks with potential for reducing the risk of diabetes. Nutrients. 2022;14(3). https://doi.org/10.3390/nu14030419

6. Łysiak G. Ornamental flowers grown in human surroundings as a source of anthocyanins with high anti-inflammatory properties. Foods. 2022;11(7). https://doi.org/10.3390/foods11070948

7. Batçıoğlu K, Küçükbay F, Alagöz MA, Günal S, Yilmaztekin Y. Antioxidant and antithrombotic properties of fruit, leaf, and seed extracts of the Halhalı olive (Olea europaea L.) native to the Hatay region in Turkey. Foods and Raw Materials. 2023;11(1):84–93. https://doi.org/10.21603/2308-4057-2023-1-557

8. Popova AYu, Tutelyan VA, Nikityuk DB. On the new (2021) norms of physiological requirements in energy and nutrients of various groups of the population of the Russian Federation. Problems of Nutrition. 2021;90(4):6–19. (In Russ.). https://doi.org/10.33029/0042-8833-2021-90-4-6-19

9. Caballero S, Li YO, McClements DJ, Davidov-Pardo G. Encapsulation and delivery of bioactive citrus pomace polyphenols: a review. Critical Reviews in Food Science and Nutrition. 2022;62(29):8028–8044. https://doi.org/10.1080/10408398.2021.1922873

10. Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. Improving the efficiency of natural antioxidant compounds via different nanocarriers. Advances in Colloid and Interface Science. 2020;278. https://doi.org/10.1016/j.cis.2020.102122

11. Maqsoudlou A, Assadpour E, Mohebodini H, Jafari SM. The influence of nanodelivery systems on the antioxidant activity of natural bioactive compounds. Critical Reviews in Food Science and Nutrition. 2022;62(12):3208–3231. https://doi.org/10.1080/10408398.2020.1863907

12. Steiner BM, Shukla V, McClements DJ, Li YO, Sancho‐Madriz M, Davidov‐Pardo G. Encapsulation of lutein in nanoemulsions stabilized by resveratrol and Maillard conjugates. Journal of Food Science. 2019;84(9):2421–2431. https://doi.org/10.1111/1750-3841.14751

13. Choi SJ, McClements DJ. Nanoemulsions as delivery systems for lipophilic nutraceuticals: Strategies for improving their formulation, stability, functionality and bioavailability. Food Science and Biotechnology. 2020;29(2):149–168. https://doi.org/10.1007/s10068-019-00731-4

14. McClements DJ. Advances in edible nanoemulsions: Digestion, bioavailability, and potential toxicity. Progress in Lipid Research. 2021;81. https://doi.org/10.1016/j.plipres.2020.101081

15. Jhaveri A, Deshpande P, Pattni B, Torchilin V. Transferrin-targeted, resveratrol-loaded liposomes for the treatment of glioblastoma. Journal of Controlled Release. 2018;277:89–101. https://doi.org/10.1016/j.jconrel.2018.03.006

16. Szulc-Musioł B, Sarecka-Hujar B. The use of micro- and nanocarriers for resveratrol delivery into and across the skin in different skin diseases – A literature review. Pharmaceutics. 2021;13(4). https://doi.org/10.3390/pharmaceutics13040451

17. Trindade LR, da Silva DVT, Baião DS, Paschoalin VMF. Increasing the power of polyphenols through nanoencapsulation for adjuvant therapy against cardiovascular diseases. Molecules. 2021;26(15). https://doi.org/10.3390/molecules26154621

18. Rodríguez‐Félix F, Del‐Toro‐Sánchez CL, Cinco‐Moroyoqui FJ, Juárez J, Ruiz‐Cruz S, López‐Ahumada GA, et al. Preparation and characterization of quercetin‐loaded zein nanoparticles by electrospraying and study of in vitro bioavailability. Journal of Food Science. 2019;84(10):2883–2897. https://doi.org/10.1111/1750-3841.14803

19. Hosseini H, Jafari SM. Introducing nano/microencapsulated bioactive ingredients for extending the shelf-life of food products. Advances in Colloid and Interface Science. 2020;282. https://doi.org/10.1016/j.cis.2020.102210

20. Jia Z, Dumont M-J, Orsat V. Encapsulation of phenolic compounds present in plants using protein matrices. Food Bioscience. 2016;15:87–104. httpss://doi.org/10.1016/j.fbio.2016.05.007

21. Augustin MA, Hemar Y. Nano- and micro-structured assemblies for encapsulation of food ingredients. Chemical Society Reviews. 2009;38(4):902–912. https://doi.org/10.1039/b801739p

22. Joye IJ, McClements DJ. Biopolymer-based nanoparticles and microparticles: Fabrication, characterization, and application. Current Opinion in Colloid and Interface Science. 2014;19(5):417–427. https://doi.org/10.1016/j.cocis.2014.07.002

23. Nesterenko A, Alric I, Silvestre F, Durrieu V. Vegetable proteins in microencapsulation: A review of recent interventions and their effectiveness. Industrial Crops and Products. 2013;42:469–479. https://doi.org/10.1016/j.indcrop.2012.06.035

24. Gouin S. Microencapsulation: Industrial appraisal of existing technologies and trends. Trends in Food Science and Technology. 2004;15(7–8):330–347. https://doi.org/10.1016/j.tifs.2003.10.005

25. Munteanu BS, Vasile C. Encapsulation of natural bioactive compounds by electrospinning – Applications in food storage and safety. Polymers. 2021;13(21). https://doi.org/10.3390/polym13213771

26. Wang YH, Zhao M, Barker SA, Belton PS, Craig DQM. A spectroscopic and thermal investigation into the relationship between composition, secondary structure and physical characteristics of electrospun zein nanofibers. Materials Science and Engineering: C. 2019;98:409–418. https://doi.org/10.1016/j.msec.2018.12.134

27. Neo YP, Ray S, Jin J, Gizdavic-Nikolaidis M, Nieuwoudt MK, Liu D, et al. Encapsulation of food grade antioxidant in natural biopolymer by electrospinning technique: A physicochemical study based on zein-gallic acid system. Food Chemistry. 2013;136(2):1013–1021. https://doi.org/10.1016/j.foodchem.2012.09.010

28. Ezhilarasi PN, Karthik P, Chhanwal N, Anandharamakrishnan C. Nanoencapsulation techniques for food bioactive components: A review. Food and Bioprocess Technology. 2013;6:628–647. https://doi.org/10.1007/s11947-012-0944-0

29. Munin A, Edwards-Lévy F. Encapsulation of natural polyphenolic compounds; a review. Pharmaceutics. 2011;3(4):793–829. https://doi.org/10.3390/pharmaceutics3040793

30. Gómez-Mascaraque LG, Llavata-Cabrero B, Martínez-Sanz M, Fabra MJ, López-Rubio A. Self-assembled gelatin-ι-carrageenan encapsulation structures for intestinal-targeted release applications. Journal of Colloid and Interface Science. 2018;517:113–123. https://doi.org/10.1016/j.jcis.2018.01.101

31. Zhang H, Wang T, He F, Chen G. Fabrication of pea protein-curcumin nanocomplexes via microfluidization for improved solubility, nano-dispersibility and heat stability of curcumin: Insight on interaction mechanisms. International Journal of Biological Macromolecules. 2021;168:686–694. https://doi.org/10.1016/j.ijbiomac.2020.11.125

32. Guo Q, Bayram I, Shu X, Su J, Liao W, Wang Y, et al. Improvement of stability and bioaccessibility of β-carotene by curcumin in pea protein isolate-based complexes-stabilized emulsions: Effect of protein complexation by pectin and small molecular surfactants. Food Chemistry. 2022;367. https://doi.org/10.1016/j.foodchem.2021.130726

33. Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Impact of gelatine coating on the performance of tannin-loaded pectin microbeads obtained through external gelation. Food Structure. 2022;32. https://doi.org/10.1016/j.foostr.2022.100256

34. Molino S, Rufián Henares JÁ, Gómez-Mascaraque LG. Tannin-rich extracts improve the performance of amidated pectin as an alternative microencapsulation matrix to alginate. Current Research in Food Science. 2022;5:243–250. https://doi.org/10.1016/j.crfs.2022.01.014

35. Elabbadi A, Jeckelmann N, Haefliger OP, Ouali L. Complexation/encapsulation of green tea polyphenols in mixed calcium carbonate and phosphate micro-particles. Journal of Microencapsulation. 2011;28(1):1–9. https://doi.org/10.3109/02652048.2010.520091

36. Oidtmann J, Schantz M, Mäder K, Baum M, Berg S, Betz M, et al. Preparation and comparative release characteristics of three anthocyanin encapsulation systems. Journal of Agricultural and Food Chemistry. 2012;60(3):844–851. https://doi.org/10.1021/jf2047515

37. Wang Q, Tang Y, Yang Y, Lei L, Lei X, Zhao J, et al. Interactions and structural properties of zein/ferulic acid: The effect of calcium chloride. Food Chemistry. 2022;373. https://doi.org/10.1016/j.foodchem.2021.131489

38. Ćorković I, Pichler A, Ivić I, Šimunović J, Kopjar M. Microencapsulation of chokeberry polyphenols and volatiles: application of alginate and pectin as wall materials. Gels. 2021;7(4). https://doi.org/10.3390/gels7040231

39. Dey M, Ghosh B, Giri TK. Enhanced intestinal stability and pH sensitive release of quercetin in GIT through gellan gum hydrogels. Colloids and Surfaces B: Biointerfaces. 2020;196. https://doi.org/10.1016/j.colsurfb.2020.111341

40. Vallejo‐Castillo V, Rodríguez‐Stouvenel A, Martínez R, Bernal C. Development of alginate‐pectin microcapsules by the extrusion for encapsulation and controlled release of polyphenols from papaya (Carica papaya L.). Journal of Food Biochemistry. 2020;44(9). https://doi.org/10.1111/jfbc.13331

41. Guzmán-Díaz DA, Treviño-Garza MZ, Rodríguez-Romero BA, Gallardo-Rivera CT, Amaya-Guerra CA, Báez-González JG. Development and characterization of gelled double emulsions based on chia (Salvia hispanica L.) mucilage mixed with different biopolymers and loaded with green tea extract (Camellia sinensis). Foods. 2019;8(12). https://doi.org/10.3390/foods8120677

42. Massounga Bora AF, Ma S, Li X, Liu L. Application of microencapsulation for the safe delivery of green tea polyphenols in food systems: Review and recent advances. Food Research International. 2018;105:241–249. https://doi.org/10.1016/j.foodres.2017.11.047

43. Sánchez-Machado DI, López-Cervantes J, Correa-Murrieta MA, Sánchez-Duarte RG, Cruz-Flores P, de la Mora-López GS. Chitosan. In: Nabavi SM, Silva AS, editors. Nonvitamin and nonmineral nutritional supplements. Academic Press; 2019. pp. 485–493. https://doi.org/10.1016/b978-0-12-812491-8.00064-3

44. Elbehairi SEI, Ismail LA, Alfaifi MY, Elshaarawy RFM, Hafez HS. Chitosan nano-vehicles as biocompatible delivering tools for a new Ag(I)curcuminoid-Gboxin analog complex in cancer and inflammation therapy. International Journal of Biological Macromolecules. 2020;165:2750–2764. https://doi.org/10.1016/j.ijbiomac.2020.10.153

45. Haładyn K, Tkacz K, Wojdyło A, Nowicka P. The types of polysaccharide coatings and their mixtures as a factor affecting the stability of bioactive compounds and health-promoting properties expressed as the ability to Inhibit the α-amylase and α-glucosidase of chokeberry extracts in the microencapsulation process. Foods. 2021;10(9). https://doi.org/10.3390/foods10091994

46. Jiang F, Du C, Zhao N, Jiang W, Yu X, Du S. Preparation and characterization of quinoa starch nanoparticles as quercetin carriers. Food Chemistry. 2022;369. https://doi.org/10.1016/j.foodchem.2021.130895

47. Remanan MK, Zhu F. Encapsulation of rutin using quinoa and maize starch nanoparticles. Food Chemistry. 2021;353. https://doi.org/10.1016/j.foodchem.2020.128534

48. Jeong H-M, Lee Y, Shin Y-J, Woo S-H, Kim J-S, Jeong D-W, et al. Development of an enzymatic encapsulation process for a cycloamylose inclusion complex with resveratrol. Food Chemistry. 2021;345. https://doi.org/10.1016/j.foodchem.2020.128777

49. Pieczykolan E, Kurek MA. Use of guar gum, gum arabic, pectin, beta-glucan and inulin for microencapsulation of anthocyanins from chokeberry. International Journal of Biological Macromolecules. 2019;129:665–671. https://doi.org/10.1016/j.ijbiomac.2019.02.073

50. Vergara C, Pino MT, Zamora O, Parada J, Pérez R, Uribe M, et al. Microencapsulation of anthocyanin extracted from purple flesh cultivated potatoes by spray drying and its effects on in vitro gastrointestinal digestion. Molecules. 2020;25(3). https://doi.org/10.3390/molecules25030722

51. di Costanzo A, Angelico R. Formulation Strategies for enhancing the bioavailability of silymarin: The state of the art. Molecules. 2019;24(11). https://doi.org/10.3390/molecules24112155

52. Tajmohammadi A, Razavi BM, Hosseinzadeh H. Silybum marianum (milk thistle) and its main constituent, silymarin, as a potential therapeutic plant in metabolic syndrome: A review. Phytotherapy Research. 2018;32(10):1933–1949. https://doi.org/10.1002/ptr.6153

53. Fallah M, Davoodvandi A, Nikmanzar S, Aghili S, Mirazimi SMA, Aschner M, et al. Silymarin (milk thistle extract) as a therapeutic agent in gastrointestinal cancer. Biomedicine and Pharmacotherapy. 2021;142. https://doi.org/10.1016/j.biopha.2021.112024

54. Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Racova Z, et al. The beneficial additive effect of silymarin in metformin therapy of liver steatosis in a pre-diabetic model. Pharmaceutics. 2021;14(1). https://doi.org/10.3390/pharmaceutics14010045

55. Amer ME, Amer MA, Othman AI, Elsayed DA, El-Missiry MA, Ammar OA. Silymarin inhibits the progression of Ehrlich solid tumor via targeting molecular pathways of cell death, proliferation, angiogenesis, and metastasis in female mice. Molecular Biology Reports. 2022;49:4659–4671. https://doi.org/10.1007/s11033-022-07315-2

56. Sansone F, Esposito T, Lauro MR, Picerno P, Mencherini T, Gasparri F, et al. Application of spray drying particle engineering to a high-functionality/low-solubility milk thistle extract: Powders production and characterization. Molecules. 2018;23(7). https://doi.org/10.3390/molecules23071716

57. Lachowicz S, Michalska-Ciechanowska A, Oszmiański J. The Impact of maltodextrin and inulin on the protection of natural antioxidants in powders made of saskatoon berry fruit, juice, and pomace as functional food ingredients. Molecules. 2020;25(8). https://doi.org/10.3390/molecules25081805

58. Upputuri RTP, Mandal AKA. Sustained release of green tea polyphenols from liposomal nanoparticles; release kinetics and mathematical modelling. Iranian Journal of Biotechnology. 2017;15(4):277–283. https://doi.org/10.15171/ijb.1322

59. Chimento A, de Amicis F, Sirianni R, Sinicropi MS, Puoci F, Casaburi I, et al. Progress to improve oral bioavailability and beneficial effects of resveratrol. International Journal of Molecular Sciences. 2019;20(6). https://doi.org/10.3390/ijms20061381

60. Ozkan G, Kostka T, Esatbeyoglu T, Capanoglu E. Effects of lipid-based encapsulation on the bioaccessibility and bioavailability of phenolic compounds. Molecules. 2020;25(23). https://doi.org/10.3390/molecules25235545

61. Rodriguez EB, Almeda RA, Vidallon MLP, Reyes CT. Enhanced bioactivity and efficient delivery of quercetin through nanoliposomal encapsulation using rice bran phospholipids. Journal of the Science of Food and Agriculture. 2019;99(4):1980–1989. https://doi.org/10.1002/jsfa.9396

62. Jahanfar S, Gahavami M, Khosravi-Darani K, Jahadi M, Mozafari MR. Entrapment of rosemary extract by liposomes formulated by Mozafari method: Physicochemical characterization and optimization. Heliyon. 2021;7(12). https://doi.org/10.1016/j.heliyon.2021.e08632

63. Cutrim CS, Alvim ID, Cortez MAS. Microencapsulation of green tea polyphenols by ionic gelation and spray chilling methods. Journal of Food Science and Technology. 2019;56(8):3561–3570. https://doi.org/10.1007/s13197-019-03908-1

64. Pan K, Luo Y, Gan Y, Baek SJ, Zhong Q. pH-driven encapsulation of curcumin in self-assembled casein nanoparticles for enhanced dispersibility and bioactivity. Soft Matter. 2014;10(35):6820–6830. https://doi.org/10.1039/c4sm00239c

65. Peng S, Zou L, Zhou W, Liu W, Liu C, McClements DJ. Encapsulation of lipophilic polyphenols into nanoliposomes using pH-driven method: Advantages and disadvantages. Journal of Agricultural and Food Chemistry. 2019;67(26):7506–7511. https://doi.org/10.1021/acs.jafc.9b01602

66. Moghaddasi F, Housaindokht MR, Darroudi M, Bozorgmehr MR, Sadeghi A. Synthesis of nano curcumin using black pepper oil by O/W Nanoemulsion Technique and investigation of their biological activities. LWT. 2018;92:92–100. https://doi.org/10.1016/j.lwt.2018.02.023

67. Kumar R, Kaur K, Uppal S, Mehta SK. Ultrasound processed nanoemulsion: A comparative approach between resveratrol and resveratrol cyclodextrin inclusion complex to study its binding interactions, antioxidant activity and UV light stability. Ultrasonics Sonochemistry. 2017;37:478–489. https://doi.org/10.1016/j.ultsonch.2017.02.004

68. Mamadou G, Charrueau C, Dairou J, Nzouzi NL, Eto B, Ponchel G. Increased intestinal permeation and modulation of presystemic metabolism of resveratrol formulated into self-emulsifying drug delivery systems. International Journal of Pharmaceutics. 2017;521(1–2):150–155. https://doi.org/10.1016/j.ijpharm.2017.02.036

69. Minnelli C, Moretti P, Fulgenzi G, Mariani P, Laudadio E, Armeni T, et al. A Poloxamer-407 modified liposome encapsulating epigallocatechin-3-gallate in the presence of magnesium: Characterization and protective effect against oxidative damage. International Journal of Pharmaceutics. 2018;552(1–2):225–234. https://doi.org/10.1016/j.ijpharm.2018.10.004

70. Huang M, Liang C, Tan C, Huang S, Ying R, Wang Y, et al. Liposome co-encapsulation as a strategy for the delivery of curcumin and resveratrol. Food and Function. 2019;10(10):6447–6458. https://doi.org/10.1039/c9fo01338e

71. Chen W, Zou M, Ma X, Lv R, Ding T, Liu D. Co‐encapsulation of EGCG and quercetin in liposomes for optimum antioxidant activity. Journal of Food Science. 2018;84(1):111–120. https://doi.org/10.1111/1750-3841.14405

72. Zhang H, Fan Q, Li D, Chen X, Liang L. Impact of gum Arabic on the partition and stability of resveratrol in sunflower oil emulsions stabilized by whey protein isolate. Colloids and surfaces B: Biointerfaces. 2019;181:749–755. https://doi.org/10.1016/j.colsurfb.2019.06.034

73. Vázquez-Ríos AJ, Molina-Crespo Á, Bouzo BL, López-López R, Moreno-Bueno G, de la Fuente M. Exosome-mimetic nanoplatforms for targeted cancer drug delivery. Journal of Nanobiotechnology. 2019;17. https://doi.org/10.1186/s12951-019-0517-8

74. Zhao L, Gu C, Gan Y, Shao L, Chen H, Zhu H. Exosome-mediated siRNA delivery to suppress postoperative breast cancer metastasis. Journal of Controlled Release. 2020;318:1–15. https://doi.org/10.1016/j.jconrel.2019.12.005

75. Wan Z, Zhao L, Lu F, Gao X, Dong Y, Zhao Y, et al. Mononuclear phagocyte system blockade improves therapeutic exosome delivery to the myocardium. Theranostics. 2020;10(1):218–230. https://doi.org/10.7150/thno.38198

76. Butreddy A, Kommineni N, Dudhipala N. Exosomes as naturally occurring vehicles for delivery of biopharmaceuticals: Insights from drug delivery to clinical perspectives. Nanomaterials. 2021;11(6). https://doi.org/10.3390/nano11061481

77. Vashisht M, Rani P, Onteru SK, Singh D. Curcumin encapsulated in milk exosomes resists human digestion and possesses enhanced intestinal permeability in vitro. Applied Biochemistry and Biotechnology. 2017;183:993–1007. https://doi.org/10.1007/s12010-017-2478-4

78. Oskouie MN, Moghaddam NSA, Butler AE, Zamani P, Sahebkar A. Therapeutic use of curcumin‐encapsulated and curcumin‐primed exosomes. Journal of Cellular Physiology. 2019;234(6):8182–8191. https://doi.org/10.1002/jcp.27615

79. Feng X, Chen X, Zheng X, Zhu H, Qi Q, Liu S, et al. Latest trend of milk derived exosomes: Cargos, functions, and applications. Frontiers in Nutrition. 2021;8. https://doi.org/10.3389/fnut.2021.747294

80. Ali NB, Razis AFA, Ooi DJ, Chan KW, Ismail N, Foo JB. Theragnostic applications of mammal and plant-derived extracellular vesicles: Latest findings, current technologies, and prospects. Molecules. 2022;27(12). https://doi.org/10.3390/molecules27123941

81. Wang Y, Wang J, Ma J, Zhou Y, Lu R. Focusing on future applications and current challenges of plant derived extracellular vesicles. Pharmaceuticals. 2022;15(6). https://doi.org/10.3390/ph15060708

82. Kardum N, Glibetic M. Polyphenols and their interactions with other dietary compounds: Implications for human health. Advances in Food and Nutrition Research. 2018;84:103–144. https://doi.org/10.1016/bs.afnr.2017.12.001

83. Huang J, He Z, Cheng R, Cheng Z, Wang S, Wu X, et al. Assessment of binding interaction dihydromyricetin and myricetin with bovine lactoferrin and effects on antioxidant activity. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2020;243. https://doi.org/10.1016/j.saa.2020.118731

84. Kanakis CD, Hasni I, Bourassa P, Tarantilis PA, Polissiou MG, Tajmir-Riahi H-A. Milk β-lactoglobulin complexes with tea polyphenols. Food Chemistry. 2011;127(3):1046–1055. https://doi.org/10.1016/j.foodchem.2011.01.079

85. Yagolnik EA, Muzafarov EN, Kim YuA, Tarahovsky YuS. The interaction of flavonol quercetin with collagen. Izvestiya Tula State University. Natural Sciences. 2015;(2):121–132. (In Russ.). https://elibrary.ru/UJEGYL

86. Zhang L, Wang Y, Xu M, Hu X. Galloyl moieties enhance the binding of (−)-epigallocatechin-3-gallate to β-lactoglobulin: A spectroscopic analysis. Food Chemistry. 2017;237:39–45. https://doi.org/10.1016/j.foodchem.2017.05.048

87. Ma C-M, Zhao X-H. Depicting the non-covalent interaction of whey proteins with galangin or genistein using the multi-spectroscopic techniques and molecular docking. Foods. 2019;8(9). https://doi.org/10.3390/foods8090360

88. Qie X, Chen Y, Quan W, Wang Z, Zeng M, Qin F, et al. Analysis of β-lactoglobulin–epigallocatechin gallate interactions: the antioxidant capacity and effects of polyphenols under different heating conditions in polyphenolic–protein interactions. Food and Function. 2020;11(5):3867–3878. https://doi.org/10.1039/d0fo00627k

89. Nieuwland M, Geerdink P, Brier P, van den Eijnden P, Henket JTMM, Langelaan MLP, et al. Food-grade electrospinning of proteins. Innovative Food Science and Emerging Technologies. 2013;20:269–275. https://doi.org/10.1016/j.ifset.2013.09.004

90. Ma C-M, Zhao X-H. The Non-covalent interactions and in vitro radical scavenging activities of the caseinate-galangin and caseinate-genistein complexes. Antioxidants. 2019;8(9). https://doi.org/10.3390/antiox8090354

91. Jia J, Gao X, Hao M, Tang L. Comparison of binding interaction between β-lactoglobulin and three common polyphenols using multi-spectroscopy and modeling methods. Food Chemistry. 2017;228:143–151. https://doi.org/10.1016/j.foodchem.2017.01.131

92. Li Z, Percival SS, Bonard S, Gu L. Fabrication of nanoparticles using partially purified pomegranate ellagitannins and gelatin and their apoptotic effects. Molecular Nutrition and Food Research. 2011;55(7):1096–1103. https://doi.org/10.1002/mnfr.201000528

93. Bruni GP, Acunha TS, de Oliveira JP, Fonseca LM, da Silva FT, Guimarães VM, et al. Electrospun protein fibers loaded with yerba mate extract for bioactive release in food packaging. Journal of the Science of Food and Agriculture. 2020;100(8):3341–3350. https://doi.org/10.1002/jsfa.10366

94. Shpigelman A, Cohen Y, Livney YD. Thermally-induced β-lactoglobulin–EGCG nanovehicles: Loading, stability, sensory and digestive-release study. Food Hydrocolloids. 2012;29(1):57–67. https://doi.org/10.1016/j.foodhyd.2012.01.016

95. Li B, Du W, Jin J, Du Q. Preservation of (−)-epigallocatechin-3-gallate antioxidant properties loaded in heat treated β-lactoglobulin nanoparticles. Journal of Agricultural and Food Chemistry. 2012;60(13):3477–3484. https://doi.org/10.1021/jf300307t

96. Lestringant P, Guri A, Gülseren İ, Relkin P, Corredig M. Effect of processing on physicochemical characteristics and bioefficacy of β-lactoglobulin–epigallocatechin-3-gallate complexes. Journal of Agricultural and Food Chemistry. 2014;62(33):8357–8364. https://doi.org/10.1021/jf5029834

97. Cheng H, Ni Y, Bakry AM, Liang L. Encapsulation and protection of bioactive nutrients based on ligand- binding property of milk proteins. International Journal of Nutrition and Food Sciences. 2015;2(7).

98. Xiang L-W, Melton LD, Leung IKH. Interactions of β-lactoglobulin with small molecules. In: Melton L, Shahidi F, Varelis P, editors. Encyclopedia of food chemistry. Elsevier; 2019. pp. 560–565. https://doi.org/10.1016/b978-0-08-100596-5.21488-1

99. Li M, Liu Y, Liu Y, Zhang X, Han D, Gong J. pH-driven self-assembly of alcohol-free curcumin-loaded zein-propylene glycol alginate complex nanoparticles. International Journal of Biological Macromolecules. 2022;213:1057–1067. https://doi.org/10.1016/j.ijbiomac.2022.06.046

100. Xue J, Tan C, Zhang X, Feng B, Xia S. Fabrication of epigallocatechin-3-gallate nanocarrier based on glycosylated casein: Stability and interaction mechanism. Journal of Agricultural and Food Chemistry. 2014;62(20):4677–4684. https://doi.org/10.1021/jf405157x

101. Li M, Fokkink R, Ni Y, Kleijn JM. Bovine beta-casein micelles as delivery systems for hydrophobic flavonoids. Food Hydrocolloids. 2019;96:653–662. https://doi.org/10.1016/j.foodhyd.2019.06.005

102. Xu J, Hao M, Sun Q, Tang L. Comparative studies of interaction of β-lactoglobulin with three polyphenols. International Journal of Biological Macromolecules. 2019;136:804–812. https://doi.org/10.1016/j.ijbiomac.2019.06.053

103. Li A, Chen L, Zhou W, Pan J, Gong D, Zhang G. Effects of baicalein and chrysin on the structure and functional properties of β-lactoglobulin. Foods. 2022;11(2). https://doi.org/10.3390/foods11020165

104. Baba WN, McClements DJ, Maqsood S. Whey protein–polyphenol conjugates and complexes: Production, characterization, and applications. Food Chemistry. 2021;365. https://doi.org/10.1016/j.foodchem.2021.130455

105. Liu Q, Sun Y, Cheng J, Zhang X, Guo M. Changes in conformation and functionality of whey proteins induced by the interactions with soy isoflavones. LWT. 2022;163. https://doi.org/10.1016/j.lwt.2022.113555

106. Huang G, Jin H, Liu G, Yang S, Jiang L, Zhang Y, et al. An insight into the changes in conformation and emulsifying properties of soy β-conglycinin and glycinin as affected by EGCG: Multi-spectral analysis. Food Chemistry. 2022;394. https://doi.org/10.1016/j.foodchem.2022.133484

107. Wu X, Lu Y, Xu H, Lin D, He Z, Wu H, et al. Reducing the allergenic capacity of β-lactoglobulin by covalent conjugation with dietary polyphenols. Food Chemistry. 2018;256:427–434. https://doi.org/10.1016/j.foodchem.2018.02.158

108. Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Advances in Colloid and Interface Science. 2017;239:136–145. https://doi.org/10.1016/j.cis.2016.05.009

109. Bušić A, Belščak-Cvitanović A, Vojvodić Cebin A, Karlović S, Kovač V, Špoljarić I, et al. Structuring new alginate network aimed for delivery of dandelion (Taraxacum officinale L.) polyphenols using ionic gelation and new filler materials. Food Research International. 2018;111:244–255. https://doi.org/10.1016/j.foodres.2018.05.034

110. Silva MP, Fabi JP. Food biopolymers-derived nanogels for encapsulation and delivery of biologically active compounds: A perspective review. Food Hydrocolloids for Health. 2022;2. https://doi.org/10.1016/j.fhfh.2022.100079

111. Luo S, Saadi A, Fu K, Taxipalati M, Deng L. Fabrication and characterization of dextran/zein hybrid electrospun fibers with tailored properties for controlled release of curcumin. Journal of the Science of Food and Agriculture. 2021;101(15):6355–6367. https://doi.org/10.1002/jsfa.11306

112. Wang L, Li X, Wang H. Fabrication of BSA-Pinus koraiensis polyphenol-chitosan nanoparticles and their release characteristics under in vitro simulated gastrointestinal digestion. Food and Function. 2019;10(3):1295–1301. https://doi.org/10.1039/C8FO01965G

113. Caballero S, Li YO, McClements DJ, Davidov‐Pardo G. Hesperetin (citrus peel flavonoid aglycone) encapsulation using pea protein–high methoxyl pectin electrostatic complexes: Complex optimization and biological activity. Journal of the Science of Food and Agriculture. 2022;102(12):5554–5560. https://doi.org/10.1002/jsfa.11874

114. Viljanen K, Kylli P, Hubbermann E-M, Schwarz K, Heinonen M. Anthocyanin antioxidant activity and partition behavior in whey protein emulsion. Journal of Agricultural and Food Chemistry. 2005;53(6):2022–2027. https://doi.org/10.1021/jf047975d

115. Viljanen K, Kylli P, Kivikari R, Heinonen M. Inhibition of protein and lipid oxidation in liposomes by berry phenolics. Journal of Agricultural and Food Chemistry. 2004;52(24):7419–7424. https://doi.org/10.1021/jf049198n

116. Aceituno-Medina M, Mendoza S, Rodríguez BA, Lagaron JM, López-Rubio A. Improved antioxidant capacity of quercetin and ferulic acid during in-vitro digestion through encapsulation within food-grade electrospun fibers. Journal of Functional Foods. 2015;12:332–341. https://doi.org/10.1016/j.jff.2014.11.028

117. Yadav K, Bajaj RK, Mandal S, Mann B. Encapsulation of grape seed extract phenolics using whey protein concentrate, maltodextrin and gum arabica blends. Journal of Food Science and Technology. 2020;57(2):426–434. https://doi.org/10.1007/s13197-019-04070-4

118. Betz M, Kulozik U. Microencapsulation of bioactive bilberry anthocyanins by means of whey protein gels. Procedia Food Science. 2011;1:2047–2056. https://doi.org/10.1016/j.profoo.2011.10.006

119. Ha H-K, Kim JW, Lee M-R, Lee W-J. Formation and characterization of quercetin-loaded chitosan oligosaccharide/β-lactoglobulin nanoparticle. Food Research International. 2013;52(1):82–90. https://doi.org/10.1016/j.foodres.2013.02.021

120. Guo Q, Su J, Shu X, Yuan F, Mao L, Liu J, et al. Fabrication, structural characterization and functional attributes of polysaccharide-surfactant-protein ternary complexes for delivery of curcumin. Food Chemistry. 2021;337. https://doi.org/10.1016/j.foodchem.2020.128019

121. Shao P, Feng J, Sun P, Ritzoulis C. Improved emulsion stability and resveratrol encapsulation by whey protein/gum Arabic interaction at oil-water interface. International Journal of Biological Macromolecules. 2019;133:466–472. https://doi.org/10.1016/j.ijbiomac.2019.04.126

122. Wusigale, Wang T, Hu Q, Xue J, Khan MA, Liang L, et al. Partition and stability of folic acid and caffeic acid in hollow zein particles coated with chitosan. International Journal of Biological Macromolecules. 2021;183:2282–2292. https://doi.org/10.1016/j.ijbiomac.2021.05.216

123. Song X, Gan K, Qin S, Chen L, Liu X, Chen T, et al. Preparation and characterization of general-purpose gelatin-based co-loading flavonoids nano-core structure. Scientific Reports. 2019;9. https://doi.org/10.1038/s41598-019-42909-0

124. Heep G, Almeida A, Marcano R, Vieira D, Mainardes RM, Khalil NM, et al. Zein-casein-lysine multicomposite nanoparticles are effective in modulate the intestinal permeability of ferulic acid. International Journal of Biological Macromolecules. 2019;138:244–251. https://doi.org/10.1016/j.ijbiomac.2019.07.030

125. Peñalva R, Morales J, González-Navarro CJ, Larrañeta E, Quincoces G, Peñuelas I, et al. Increased oral bioavailability of resveratrol by its encapsulation in casein nanoparticles. International Journal of Molecular Sciences. 2018;19(9). https://doi.org/10.3390/ijms19092816

126. Peñalva R, Esparza I, Morales-Gracia J, González-Navarro CJ, Larrañeta E, Irache JM. Casein nanoparticles in combination with 2-hydroxypropyl-β-cyclodextrin improves the oral bioavailability of quercetin. International Journal of Pharmaceutics. 2019;570. https://doi.org/10.1016/j.ijpharm.2019.118652

127. Pedrozo RC, Antônio E, Khalil NM, Mainardes RM. Bovine serum albumin-based nanoparticles containing the flavonoid rutin produced by nano spray drying. Brazilian Journal of Pharmaceutical Sciences. 2020;56. https://doi.org/10.1590/s2175-97902019000317692

128. Aluani D, Tzankova V, Kondeva-Burdina M, Yordanov Y, Nikolova E, Odzhakov F, et al. Evaluation of biocompatibility and antioxidant efficiency of chitosan-alginate nanoparticles loaded with quercetin. International Journal of Biological Macromolecules. 2017;103:771–782. https://doi.org/10.1016/j.ijbiomac.2017.05.062

129. Baum M, Schantz M, Leick S, Berg S, Betz M, Frank K, et al. Is the antioxidative effectiveness of a bilberry extract influenced by encapsulation? Journal of the Science of Food and Agriculture. 2014;94(11):2301–2307. https://doi.org/10.1002/jsfa.6558

130. Rawel HM, Czajka D, Rohn S, Kroll J. Interactions of different phenolic acids and flavonoids with soy proteins. International Journal of Biological Macromolecules. 2002;30(3–4):137–150. https://doi.org/10.1016/s0141-8130(02)00016-8

131. Roy P, Parveen S, Ghosh P, Ghatak K, Dasgupta S. Flavonoid loaded nanoparticles as an effective measure to combat oxidative stress in Ribonuclease A. Biochimie. 2019;162:185–197. https://doi.org/10.1016/j.biochi.2019.04.023

132. Beconcini D, Felice F, Zambito Y, Fabiano A, Piras AM, Macedo MH, et al. Anti-inflammatory effect of cherry extract loaded in polymeric nanoparticles: Relevance of particle internalization in endothelial cells. Pharmaceutics. 2019;11(10). https://doi.org/10.3390/pharmaceutics11100500

133. Valizadeh H, Abdolmohammadi-vahid S, Danshina S, Ziya Gencer M, Ammari A, Sadeghi A, et al. Nano-curcumin therapy, a promising method in modulating inflammatory cytokines in COVID-19 patients. International Immunopharmacology. 2020;89. https://doi.org/10.1016/j.intimp.2020.107088

134. Aljabali AAA, Bakshi HA, Hakkim FL, Haggag YA, Al-Batanyeh MK, Al Zoubi MS, et al. Albumin nano-encapsulation of piceatannol enhances its anticancer potential in colon cancer via downregulation of nuclear p65 and HIF-1α. Cancers. 2020;12(1). https://doi.org/10.3390/cancers12010113

135. Guzmán-Oyarzo D, Hernández-Montelongo J, Rosas C, Leal P, Weber H, Alvear M, et al. Controlled release of caffeic acid and pinocembrin by use of nPSi-βCD composites improves their antiangiogenic activity. Pharmaceutics. 2022;14(3). https://doi.org/10.3390/pharmaceutics14030484

136. Bulboacă AE, Porfire A, Bolboacă SD, Nicula CA, Feștilă DG, Roman A, et al. Protective effects of liposomal curcumin on oxidative stress/antioxidant imbalance, metalloproteinases 2 and -9, histological changes and renal function in experimental nephrotoxicity induced by gentamicin. Antioxidants. 2021;10(2). https://doi.org/10.3390/antiox10020325

137. Zu Y, Overby H, Ren G, Fan Z, Zhao L, Wang S. Resveratrol liposomes and lipid nanocarriers: Comparison of characteristics and inducing browning of white adipocytes. Colloids and Surfaces B: Biointerfaces. 2018;164:414–423. https://doi.org/10.1016/j.colsurfb.2017.12.044

138. Mittal A, Singh A, Benjakul S. Preparation and characterisation of liposome loaded with chitosan-epigallocatechin gallate conjugate. Journal of Microencapsulation. 2021;38(7–8):533–545. https://doi.org/10.1080/02652048.2021.1990425

139. Zhang S, Li X, Ai B, Zheng L, Zheng X, Yang Y, et al. Binding of β-lactoglobulin to three phenolics improves the stability of phenolics studied by multispectral analysis and molecular modeling. Food Chemistry: X. 2022;15. https://doi.org/10.1016/j.fochx.2022.100369

140. Ferrentino G, Asaduzzaman Md, Scampicchio MM. Current technologies and new insights for the recovery of high valuable compounds from fruits by-products. Critical Reviews in Food Science and Nutrition. 2018;58(3):386–404. https://doi.org/10.1080/10408398.2016.1180589

141. Dimou C, Karantonis HC, Skalkos D, Koutelidakis AE. Valorization of fruits by-products to unconventional sources of additives, oil, biomolecules and innovative functional foods. Current Pharmaceutical Biotechnology. 2019;20(10):776–786. https://doi.org/10.2174/1389201020666190405181537

142. Valencia-Hernandez LJ, Wong-Paz JE, Ascacio-Valdés JA, Chávez-González ML, Contreras-Esquivel JC, Aguilar CN. Procyanidins: From agro-industrial waste to food as bioactive molecules. Foods. 2021;10(12). https://doi.org/10.3390/foods10123152

143. Cano-Lamadrid M, Artés-Hernández F. By-products revalorization with non-thermal treatments to enhance phytochemical compounds of fruit and vegetables derived products: A review. Foods. 2021;11(1). https://doi.org/10.3390/foods11010059

144. Chamorro F, Carpena M, Fraga-Corral M, Echave J, Riaz Rajoka MS, Barba FJ, et al. Valorization of kiwi agricultural waste and industry by-products by recovering bioactive compounds and applications as food additives: A circular economy model. Food Chemistry. 2022;370. https://doi.org/10.1016/j.foodchem.2021.131315

145. Hafizov SG, Musina ON, Hafizov GK. Extracting hydrophilic components from pomegranate peel and pulp. Food Processing: Techniques and Technology. 2023;53(1):168–182. (In Russ.). https://doi.org/10.21603/2074-9414-2023-1-2425


Login or Create
* Forgot password?