Moscow, Russian Federation
Moscow, Russian Federation
Optical monitoring improves the efficiency of milk storage and transportation. For instance, optical photoluminescent diagnostics can be used to determine accidental freezing of milk caused by inappropriate storage and transportation. This research featured milk of Michurino brand with 3.2% fat. Its parameters were monitored using an Expert Profi ultrasonic analyzer. The optical diagnostics involved a CM2203 diffraction spectrofluorimeter. After temporary defrosting, the milk quality deteriorated. The spectral characteristics of the previously frozen sample and the control demonstrated quantitative differences in the range of 300–400 nm. Differences also occurred at excitation wavelengths of 324 nm and 360 nm while the excitation wavelengths of 290 nm and 445 nm did not react to freezing. Integral photoluminescence flux Φ324 in the sample subjected to temporary freezing exceeded the same indicator in the unfrozen sample by 12.5% whereas fluxes Φ445 remained almost the same. These differences made it possible to develop an express method for detecting milk freezing. It included excitation with 324 nm (working xcitation) and 445 nm (reference excitation), registration of photoluminescent radiation at 360–600 nm and 480–660 nm, and calculation of the Φ324 vs. Φ445 ratio. The method may be used with LEDs or photodiodes for a non-destructive express monitoring of milk during its storage and transportation in cold regions.
optical diagnostics, milk, transportation, luminescence, freezing, storage, spectral analysis
1. Kruchinin, A. G. K voprosu vliyaniya zamorazhivaniya na tehnologicheskie svoystva moloka / A. G. Kruchinin, S. N. Turovskaya, E. E. Illarionova, A. V. Bigaeva // Vestnik Mezhdunarodnoy akademii holoda. 2020. № 3. S. 58–63; https://doi.org/10.17586/1606-4313-2020-19-3-58-63; https://elibrary.ru/pdrduk
2. Sesadze, Sh. M. Sushka ili zamorazhivanie? Chto luchshe? / Sh. M. Sesadze // Molochnaya promyshlennost'. 2018. № 2. S. 40–41. https://elibrary.ru/ypauur
3. Tvorogova, A. A. Kak vliyaet zamorazhivanie na mikrostrukturu i konsistenciyu molochnoy produkcii / A. A. Tvorogova, N. V. Kazakova, I. A. Gurskiy [i dr.] // Molochnaya promyshlennost'. 2018. № 8. S. 62–63. https://doi.org/10.31515/1019-8946-2018-8-62-63; https://elibrary.ru/xulczv
4. Tepel, A. Himiya i fizika moloka / A. Tepel. – SPb.: Professiya, 2012. – 831 s.
5. Nespolo, C. R. Effects of cold storage and freezing on sheep’s milk / C. R. Nespolo, F. R. Munieweg, A. H. Marcelino // Food Science and Technology. 2024. Vol. 44. https://doi.org/10.5327/fst.00137
6. Moreno, Ma. C. Effects of Refrigeration, Freezing and Blast Freezing on Quality of Raw Cow's Milk / Ma. C. Moreno, O. Emata // Mindanao Journal of Science and Technology. 2022. Vol. 20 (1). P. 241–255. http://dx.doi.org/10.61310/mndjstecbe.1096.22
7. Pavlova, A. I. Dinamika izmeneniya biohimicheskogo sostava zamorozhennogo letnego i zimnego kobyl'ego moloka pri ego hranenii / A. I. Pavlova // Vestnik KrasGAU. 2014. № 7 (94). C. 185–187. https://elibrary.ru/snfbvb
8. Rukin, I. V. Vliyanie zamorazhivaniya prob na tochnost' opredeleniya osnovnyh selekcionnyh parametrov moloka / I. V. Rukin, E. V. Kamaldinov, R. T. Barsamyan [i dr.] // Molochnoe i myasnoe skotovodstvo. 2022. № 6. C. 42–46. https://doi.org/10.33943/MMS.2022.73.60.008; https://elibrary.ru/emhjti
9. Laosam, P. Adjusting the initial milk pH before freezing affected physico-chemical properties of thawed goat milk / P. Laosam, C. Pin, P. Pakdeechanuan // Food Research. 2022. Vol. 6(2). P. 475–481. http://dx.doi.org/10.26656/fr.2017.6(2).302
10. Belozerov, G. A. Rekomendacii Mezhdunarodnogo instituta holoda po proizvodstvu i hraneniyu zamorozhennyh pischevyh produktov. Ch. 8 / G. A. Belozerov, O. V. Bol'shakov, M. A. Dibirasulaev, V. M. Stefanovskiy // Holodil'naya tehnika. 2015. № 8. S. 50–52. https://elibrary.ru/ugupet
11. Belyakova, Z. Yu. Syroe moloko: novye trebovaniya tehnicheskih reglamentov Tamozhennogo soyuza / Z. Yu. Belyakova, I. A. Makeeva, N. V. Stratonova // Kontrol' kachestva produkcii. 2022. №4. C. 18–22. https://elibrary.ru/tmguar
12. Bogomolov, A. Reference-free spectroscopic determination of fat and protein in milk in the visible and near infrared region below 1000 nm using spatially resolved diffuse reflectance fiber probe / A. Bogomolov [et al.] // Talanta. 2017. Vol. 167. P. 563–572. https://doi.org/10.1016/j.talanta.2017.02.047
13. Ivanov, Yu. A. Strategicheskie napravleniya razvitiya molochnogo skotovodstva / Yu. A. Ivanov // Tehnika i tehnologii v zhivotnovodstve. 2022. № 2(46). S. 18–23. https://doi.org/10.51794/27132064-2022-2-18; https://elibrary.ru/byherr
14. Lobachevskiy, Ya. P. Cifrovye tehnologii i robotizirovannye tehnicheskie sredstva dlya sel'skogo hozyaystva / Ya. P. Lobachevskiy, A. S. Dorohov // Sel'skohozyaystvennye mashiny i tehnologii. 2021. T. 15, № 4. S. 6–10. https://doi.org/10.22314/2073-7599-2021-15-4-6-10; https://elibrary.ru/yfrzdv
15. Belyakov, M. V. Izmenenie spektral'nyh fotolyuminescentnyh svoystv moloka pri skisanii / M. V. Belyakov, G. N. Samarin, A. A. Kudryavcev, I. Yu. Efremenkov // Inzhenernye tehnologii i sistemy. 2022. № 3. S. 460–475. https://doi.org/10.15507/2658-4123.032.202203.460-475; https://elibrary.ru/umigbn
16. Dorokhov, A. Control of milk acidity by photoluminescence / A. Dorokhov, G. Samarin, M. Belyakov [et al.] // International Journal of Food Science & Technology. 2023. Vol. 58. P. 222–227. https://doi.org/10.1111/ijfs.16195