TECHNOLOGICAL APPROACHES TO INDUSTRIAL WHEY PROCESSING
Abstract and keywords
Abstract (English):
Whey is a by-product of dairy production. This valuable resource contains up to 50% of all nutrients in the original milk. Modern dairy science has to solve three key tasks: 1) efficient extraction of such valuable components as proteins, lactose, and minerals; 2) environmental sustainability; 3) new industrial applications. This article reviews various methods of whey processing, their effectiveness, advantages, limitations, and industrial prospects. Ultrafiltration makes it possible to reach 80% protein concentration (dry matter). Nanofiltration provides demineralization and concentration as high as 18-20%. Reverse osmosis concentrates whey to a mass fraction of 18-20%. Ion-exchange chromatography complements these methods in the pharmaceutical industry by protein fractionation. During electrochemical processing, electric current passes through whey located between electrodes, which are separated by an ion-permeable membrane. This type of processing creates a concentration of anions and cations that corresponds to the isoelectric point of protein coagulation. Enzymatic hydrolysis opens up new opportunities for obtaining bioactive peptides with reliable antioxidant, antimicrobial, and hypotensive properties. Each of the abovementioned methods has certain limitations. For instance, membrane processes require careful preliminary preparation and are associated with such phenomenon as concentration polarization. Thermal methods are energy intensive while enzymatic methods depend on the activity and stability of enzyme preparations. By combining these methods, dairy producers achieve deep processing and perform selective isolation of target fractions. Advanced whey processing technologies provide new sustainable opportunities, promoting the dairy industry to the stage of circular economy.

Keywords:
whey, processing methods, membrane technologies, centrifugation, demineralization, enzymatic hydrolysis
Text
Text (PDF): Read Download
References

1. Gavrilov, G. B. Puti racional'nogo ispol'zovaniya molochnoy syvorotki / G. B. Gavrilov, E. F. Kravchenko // Syrodelie i maslodelie. 2013. № 2. S. 10–13. https://elibrary.ru/pwwmot

2. Jelen, P. Whey-based functional beverages / P. Jelen // Functional and speciality beverage technology. Ed. by P. Paquin – Cambridge: Woodhead Publishing, 2009. – P. 259–280.

3. Gavrilov, G. B. Membrannye processy dlya pererabotki moloka i syvorotki / G. B. Gavrilov, E. F. Kravchenko, V. G. Gavrilov // Syrodelie i maslodelie. 2013. № 6. S. 22–23. https://elibrary.ru/rpvgxh

4. Baldasso, C. Concentration and purification of whey proteins by ultrafiltration / C. Baldasso, T. C. Barros, I. C. Tessaro // Desalination. 2011. Vol. 278(1–3). P. 381–386. https://doi.org/10.1016/j.desal.2011.05.055

5. Evdokimov, I. A. Razvitie membrannyh tehnologiy: racional'nost' i bezothodnost' / I. A. Evdokimov // Molochnaya promyshlennost'. 2010. № 12. S. 60–65. https://elibrary.ru/nceazz

6. Hramcov, A. G. Ispol'zovanie mikrofil'tracii dlya biologicheskoy stabilizacii molochnoy syvorotki / A. G. Hramcov, E. R. Abdulina, I. A. Evdokimov // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 1997. № 1. S. 37-39.

7. Pouliot, Y. Membrane processes in dairy technology - From a simple idea to worldwide panacea / Y. Pouliot // International Dairy Journal. 2008. Vol. 18(7). P. 735–740. https://doi.org/10.1016/j.idairyj.2008.03.005

8. Mulder, M. Basic principles of membrane technology / M. Mulder. – Dordrecht: Springer, 2012. – 564 p.

9. Zydney, A. L. Protein separations using membrane filtration: new opportunities for whey fractionation / A. L. Zydney // International Dairy Journal. 1998. Vol. 8(3). P. 243–250. https://doi.org/10.1016/S0958-6946(98)00045-4

10. Hramcov, A. G. Chto esche pochitat' o syvorotke / A. G. Hramcov // Molochnaya promyshlennost'. 2015. № 12. S. 49–50. https://elibrary.ru/svppws

11. Peinemann, K. V. Membranes for food applications / K. V. Peinemann, S. P. Nunes, L. Giorno. – Hoboken: John Wiley & Sons, 2011. – 264 p.

12. Menchik, P. Nonthermal concentration of liquid foods by a combination of reverse osmosis and forward osmosis. Acid whey: A case study / P. Menchik, C. I. Moraru // Journal of Food Engineering. 2019. Vol. 253(6). P. 40–48. https://doi.org/10.1016/j.jfoodeng.2019.02.015

13. Fenton-May, R. I. Use of ultrafiltration/reverse osmosis systems for the concentration and fractionation of whey / R. I. Fenton-May, C. G. Hill Jr, C. H. Amundson // Journal of Food Science. 1971. Vol. 36(1). P. 14–21. https://doi.org/10.1111/j.1365-2621.1971.tb02021.x

14. Chen, G. Q. A pilot scale study on the concentration of milk and whey by forward osmosis / G. Q. Chen [et al.] // Separation and Purification Technology. 2019. Vol. 215. P. 652–659. https://doi.org/10.1016/j.seppur.2019.01.050

15. Paladiy I. V. Molochnaya syvorotka: obzor rabot. Chast' 2. Processy i metody obrabotki / I. V. Paladiy i dr. // Elektronnaya obrabotka materialov. 2021. T. 57, № 3. S. 83–101. https://doi.org/10.52577/eom.2021.57.3.83

16. Bespalova, E. V. Puti pererabotki molochnoy syvorotki, poluchennoy pri izgotovlenii syrov s krasitelyami i pischevkusovymi dobavkami / E. V. Bespalova, O. L. Soroko, E. A. Bareko // Aktual'nye voprosy pererabotki myasnogo i molochnogo syr'ya. 2021. № 16. S. 81–88. https://doi.org/10.47612/2220-8755-2021-16-81-88

17. Argenta, A. B. Membrane separation processes applied to whey: A review / A. B. Argenta, A. D. P. Scheer // Food Reviews International. 2020. Vol. 36(5). P. 499–528. https://doi.org/10.1080/87559129.2019.1649694

18. Sathya, R. Recent Trends in Membrane Processing of Whey / R. Sathya [et al.] // Whey Valorization: Innovations, Technological Advancements and Sustainable Exploitation. Ed. by by A. Poonia, A. T. Petkoska. – Singapore: Springer Nature Singapore, 2023. – P. 323–353. https://doi.org/10.1007/978-981-99-5459-9_16

19. Buchanan, D. Recent advances in whey processing and valorisation: Technological and environmental perspectives / D. Buchanan [et al.] // International Journal of Dairy Technology. 2023. Vol. 76(2). 291. https://doi.org/10.1111/1471-0307.12935

20. Dymar, O. V. Opredelenie optimal'nyh parametrov processa fermentativnogo gidroliza laktozy v molochnoy syvorotke / O. V. Dymar, L. N. Emel'yanova, G. S. Dzhumok // Pischevaya promyshlennost': nauka i tehnologii. 2012. № 1. S. 24–30. https://elibrary.ru/oeaoso

21. Lodygin, A. D. Teoriya i praktika napravlennogo sinteza oligosaharidov v molochnom laktozosoderzhaschem syr'e / A. D. Lodygin, I. A. Evdokimov // Trudy BGU. Seriya: Fiziologicheskie, biohimicheskie i molekulyarnye osnovy bezopasnoy biosistemy. 2014. T. 9, № 2. S. 173–180.

22. Xavier, J. R. β-galactosidase: Biotechnological applications in food processing / J. R. Xavier, K. V. Ramana, R. K. Sharma // Journal of Food Biochemistry. 2018. Vol. 42(5). e12564. https://doi.org/10.1111/jfbc.12564

23. Hill, A. R. Precipitation and recovery of whey proteins: A review / A. R. Hill, D. M. Irvine, D. H. Bullock // Canadian Institute of Food Science and Technology Journal. 1982. Vol. 15(3). P. 155–160. https://doi.org/10.1016/S0315-5463(82)72529-5

24. Yadav, J. S. S. Cheese whey: a potential resource to transform into bioprotein, functional/nutritional proteins and bioactive peptides / J. S. S. Yadav [et al.] // Biotechnology Advances. 2015. Vol. 33(6). P. 756–774. https://doi.org/10.1016/j.biotechadv.2015.07.002

25. Mironenko, I. M. Osobennosti pererabotki syvorotochnyh belkov moloka / I. M. Mironenko, E. V. Chorey // Syrodelie i maslodelie. 2009. № 2. S. 40–41. https://elibrary.ru/kzqvmz

26. Smithers, G. W. Whey and whey proteins–From ‘gutter-to-gold’ / G. W. Smithers // International Dairy Journal. 2008. Vol. 18(7). P. 695–704. https://doi.org/10.1016/j.idairyj.2008.03.008

27. Zalashko, M. V. Biotehnologiya pererabotki molochnoy syvorotki / M. V. Zalashko. – M.: Agropromizdat, 1990. – 122 s.

28. Olano, A. Lactulose as a food ingredient / A. Olano, N. Corzo // Journal of the Science of Food and Agriculture. 2009. Vol. 89(12). P. 1987–1990. https://doi.org/10.1002/jsfa.3694

29. Vera, C. Trends in lactose-derived bioactives: Synthesis and purification / C. Vera, C. Guerrero, A. Illanes // Systems Microbiology and Biomanufacturing. 2022. Vol. 2(3). P. 393–412. https://doi.org/10.1007/s43393-021-00068-2

30. Hramcov, A. G. Innovacionnye tehnologii optimizirovannyh po biologicheskoy cennosti pischevyh produktov novogo pokoleniya na osnove molochnoy syvorotki / A. G. Hramcov // Izvestiya vysshih uchebnyh zavedeniy. Pischevaya tehnologiya. 2018. № 4. S. 30–32. https://doi.org/10.26297/0579-3009.2018.4.7; https://elibrary.ru/uyylyr

31. Jameson, J. K. Biochemical characterization of two cellobiose 2-epimerases and application for efficient production of lactulose and epilactose / J. K. Jameson [et al.] // Current Research in Biotechnology. 2021. Vol. 3. P. 57–64. https://doi.org/10.1016/j.crbiot.2021.02.003

32. Ryabceva, S. A. Fiziologicheskie effekty, mehanizmy deystviya i primenenie laktulozy / S. A. Ryabceva [i dr.] // Voprosy pitaniya. 2020. T. 89, № 2. S. 5–20. https://doi.org/10.24411/0042-8833-2020-10012; https://elibrary.ru/tnxhmw

33. Panesar, P. S. Biotechnological approaches for the value addition of whey / P. S. Panesar, J. F. Kennedy // Critical Reviews in Biotechnology. 2012. Vol. 32(4). P. 327–348. https://doi.org/10.3109/07388551.2011.640624

Login or Create
* Forgot password?