THE FLOW REGISTRATION SYSTEM IN THE CONTROL PROBLEMS BASED ON WAVELET TRANSFORMS FOR THE MIXTURE PRODUCTION AGGREGATE
Abstract and keywords
Abstract (English):
In this article certain questions of developing the system for current monitoring and controlling the dynamics of mixture production processes are considered. It should be noted that the system created uses non-traditional approach based on wavelet transforms. The program modules performance principles used for data acquisition and its specific processing are explained here. Theoretical fundamentals of wavelet transforms are touched and the wavelet matching pursuit algorithm is depicted. Moreover, engineering aspects of the experimental unit with the automation system, the issues of forming the flow signals registration sub-system and pick-ups calibration, and also of using the time-frequency distributions (Wigner maps) to identify a current state of the dosing processes dynamics and control it are presented.

Keywords:
Wavelet transform, mixture production, dosing, flow measuring, time-frequency distribution, Wigner-Ville dis-tribution.
Text
Publication text (PDF): Read Download

Введение

Задача управления динамикой смесеприготовительного процесса тесно связана с задачей отображения текущего состояния последнего. Вместе с тем данные контрольных измерений при эксплуатации смесительных агрегатов показывают, что материалопотоковые расходы в силу системно-технологи-ческих причин являются нестационарными, т.е. представляют собой сигналы с времязависимым параметром – частотой (рис. 1).

 

 

Рис. 1. Нестационарный сигнал барабанного дозирующего устройства

 

Как видно из рис. 1, частота дозирования и мгновенный расход изменяются в широком диапазоне, что значительно усложняет задачу идентификации текущего состояния процесса. В связи со сложностью обработки регистрируемых нестационарных сигналов авторами предложен подход, в основе которого лежит способ нахождения текущих частот дозирования с использованием вейвлет-преобразований, а также замена сигналов мгновенного расхода на фрагментарно-малых временных участках анализируемой осциллограммы сигналами усредненного расхода. Усредненный расход получается путем математической обработки осциллограмм мгновенного расхода за определенный период времени, в течение которого его величина рассматривается постоянной. Решение задачи перехода от мгновенного расхода к усредненному было реализовано на базе системы автоматизированного управления смесеприготовлением.

Для решения задач оптимального управления производством сухих дисперсных композиций целесообразно применять централизованную автоматизированную систему управления технологическими процессами (АСУ ТП). К системам подобного назначения относятся SCADA-системы, которые осуществляют управление технологическим объектом, сбор и предоставление информации о его состоянии оператору процесса. Также в силу открытости архитектуры в подобные системы могут быть встроены дополнительные функции обработки сигналов с целью более точного определения текущих режимов работы.

Целью данной статьи является рассмотрение во­просов построения системы отображения текущих режимов работы смесеприготовительных агрегатов, использующей подход на базе вейвлет-преобразова­ний; пояснение принципов работы программных мо-­

дулей, осуществляющих сбор, специфическую обра­ботку и предоставление информации операторам для управления агрегатом. Поэтому в соответствии с за­явленной целью в начале работы затрагиваются тео­ретические основы вейвлет-преобразования и дается характеристика специфического алгоритма вейвлет-поиска соответствия, наиболее полно удовлетво­ряющего условиям рассматриваемой задачи управ­ления агрегатом. Далее рассматриваются техниче­ские аспекты экспериментальной установки с систе­мой автоматизации, вопросы формирования подсис­темы регистрации расходовых сигналов, тарировки датчиков, использования время-частотных распреде­лений (карт Вигнера) для идентификации текущего состояния и управления динамикой процессов дози­рования.

 

Объекты и методы исследований

Эффективным методом анализа материалопото­ков для адекватной обработки нестационарных сиг­налов с переменными частотами является непрерыв­ное вейвлет-преобразование (НВП [1]). Укажем два свойства НВП, благодаря которым алгоритм вейв­летного преобразования способен обрабатывать не­стационарные по частоте сигналы:

1) местоположение вейвлет-окна локализуется в окрестности соответствующих неоднородностей сигнала (свойство адаптируемости НВП);

2) ширина окна изменяется (свойство масштаби­руемости НВП), поскольку преобразование вычисля­ется для каждого отдельного спектрального компо­нента, что является самым значительным свойством вейвлет-преобразования.

Непрерывное вейвлет-преобразование определя­ется выражением

 

          (1)

 

Здесь НВП – функция двух переменных (t и s): параметров смещения и масштаба; g(t) – преобра­зующая функция, или анализирующий вейвлет; множитель  является нормализирующим коэффи­циентом, гарантирующим получение единич­ной нормы вейвлет-функции .

Таким образом, меняя τ и s, можно получить на­бор вейвлет-функций, описывающих время-частот­ное представление анализируемого сигнала, причем при наличии высокочастотных составляющих, т.е. компонент сигнала, существующих на малых вре­менных интервалах, возникает хорошее разрешение по времени (t-разрешение). При замешивании в сиг­нал регулярной низкочастотной составляющей НВП обеспечивает хорошее разрешение по частоте (w-разрешение). Данный факт интерпретируется покры­тием время-частотной области w-t (частота-время) неравномерными прямоугольниками с центрами в точках (wj;tj) (рис. 2).

 

 

Рис. 2. Время-частотная сетка при непрерывном вейв­лет-преобразовании

 

Из рис. 2 видно, что ширина частотной полосы у соответствующей вейвлет-функции увеличивается с возрастанием центральной частоты соответствую­щего прямоугольника, а последняя, в свою очередь, обратно пропорциональна масштабу s. Следова­тельно, с помощью отмасштабированного вейвлета g(t) хорошо анализируются резкие временные пики на высоких частотах, а с помощью низкочастотного растянутого вейвлета получаем хорошее w-разреше­ние. Отсюда видно, что НВП по своей сути соответ­ствует фильтрации анализируемого сигнала x(t) пу­тем его пропускания через набор (банк) фильтров с определенными импульсными переходными функ­циями в виде конкретных отмасштабированных вейвлетов.

Первое, на что следует обратить внимание, – это то, что, хотя высота и ширина полей изменяются, их площадь остается постоянной. То есть каждое поле представляет идентичный по площади блок время-частотной плоскости, но дающий различное соотно­шение времени и частоты. На низких частотах высота полей меньшая (что соответствует лучшим разре­шающим способностям, поскольку имеется меньшая неоднозначность относительно значения точной час­тоты), но их ширина больше (это соответствует не­достаточному временному разрешению, так как при­сутствует большая неопределенность относительно значений точных моментов времени, соответствую­щих входящим в состав анализируемого сигнала не­однородностям). На верхних частотах ширина полей уменьшается, то есть временное разрешение стано­вится лучше, а их высота увеличивается, что соответ­ствует более слабому разрешению по частоте.

В вычислительной среде для анализа сигналов удобной является диадная дискретизация. Параметры смещения t и масштаба s с учетом диадной разметки w/t-плоскости формируют вейвлет-функцию в двоичной нотации:

 

    (2)

 

где k – коэффициент дискретного смещения. В качестве носителя вейвлет-функции выступает интервал длиной 2j :

 

 

 

                     (3)

 

где 2 – шаг растяжения/сжатия; 2j – разрешение вейвлет-анализа (в виде вейвлет-окна).

Если задан непрерывный сигнал x(t) c финитным спектром wx(t) wmax, в котором спектр F{x(t)}≡ 0, при wx(t) > wmax, то в соответствии с теоремой Уитте­кера-Котельникова-Шеннона [1] он может быть вос­становлен полностью по его дискретным значениям x(iTS), wmax – максимальная частота в спектре сигнала; TS – период дискретизации при аналого-цифровом преобразовании сигнала.

Отметим, что недостатком НВП является нерав­номерное разрешение на разных участках частотно-временной плоскости.

Указанного недостатка лишено вейвлет-преобра­зование на основе так называемого алгоритма вейв­лет-поиска соответствия (ВПС [2]), в основе кото­рого выбор базисных вейвлет-функций, наилучшим образом соответствующих анализируемым сигналам, из специализированных баз данных в виде время-частотных тезаурусов. В соответствии с этим алго­ритмом на основе некоторой базисной материнской функции g(t,s,τ,ξ) генерируется семейство вейвлетов путем ее масштабирования (s), смещения (τ) и моду­ляции (ξ). Полученное семейство представляет собой функции в виде так называемых время-частотных атомов. Результатом работы такого алгоритма явля­ется возможность высокой время-частотной локали­зации анализируемых сигналов. Иными словами, по­добные базисные функции-атомы отражают много­численные комбинации значений размеров времен­ных и частотных анализирующих окон, в результате чего формируется избыточный набор атомов. Как только виды атомарных функций определены, рас­считывается наилучшее соответствие между ними и осциллограммой исследуемого сигнала путем ото­бражения последней на вейвлет-тезаурус (время-час­тотный словарь).

Алгоритм ВПС заключается в следующем. На первом шаге итеративной процедуры из словаря вы­бирается исходный вектор gIo, дающий наибольшее скалярное произведение с анализируемым расходо­вым сигналом f(t):

 

             (4)

 

где I0индекс параметров.

Затем остаточный вектор R1, полученный после аппроксимации f(t) в направлении gIo, раскладыва­ется подобным же образом. Итеративная процедура повторяется по последующим получаемым остаточ­ным векторам   где n – номер итерации (рис. 3).

 

уровень коэффициентов аппроксимации (вейвлет-коэффицентов)

 

1-я

итерация

m

итерация

уровень остаточных векторов

 

 

Рис. 3. Блок-схема алгоритма вейвлет-поиска соответствия (адаптивной аппроксимации сигнала)

 

На каждой итерации выбирается только одна вейвлет-функция ; отбираемый вейвлет  вво­дится в аппроксимативное выражение (4) по кри­терию максимума скалярного произведения вейвлета  и остаточного вектора