Uglich, Russian Federation
Uglich, Russian Federation
Uglich, Russian Federation
Chlorine dioxide (ClO2) is one of the most effective disinfectants against bacteria, spores, viruses, fungi, and protozoa. However, the jury is still out on the role of pH in its bactericidal performance. This research tested the effect of pH 3–11 on the antibacterial properties of chlorine dioxide against Escherichia coli as the main sanitary indicator in dairy production. The experiment involved solutions with various levels of bacterial contamination with a viable cell count of 105 CFU/cm3. The pH of the medium and the concentration of chlorine dioxide exerted a complex effect on E. coli. The 99.99% disinfection performance occurred at lower pH values. The minimal concentration of chlorine dioxide in this research was 1.7 mg/dm3 (0.05%). It was efficient against E. coli only at pH 3 while 2.5 mg/dm3 (0.075%) was efficient at pH 3–5. A concentration of 3.3 mg/dm3 (0.1%) provided complete inactivation of E. coli in solutions with pH ≤ 8. Chlorine dioxide at a concentration of 6.6 mg/dm3 (0.2%) killed the test culture at pH 3–10. The effective concentration across the total pH range was 8.3 mg/dm3 (0.25%).
chlorine dioxide, disinfection, bactericidal efficacy, disinfection efficacy, Escherichia coli, pH, disinfectant concentration
1. Wu, V. C.-H. Chlorine Dioxide (ClO2) // Postharvest Management Approaches for Maintaining Quality of Fresh Produce / V. C.-H. Wu. – Cham: Springer, 2016. – P. 209–218. https://doi.org/10.1007/978-3-319-23582-0_12
2. Jonnalagadda, S. B. Chlorine dioxide for bleaching, industrial applications and water treatment / S. B. Jonnalagadda, S. Nadupalli // Indian Chemical Engineer. 2014. Vol. 56(2). R. 123–136. https://doi.org/10.1080/00194506.2014.881032
3. Gray, N. F. Chlorine Dioxide // Microbiology of Waterborne Diseases / N. F. Gray. – Academic Press, 2014. – R. 591–598. https://doi.org/10.1016/b978-0-12-415846-7.00032-9
4. Petrosyan, O. P. Analiticheskiy obzor reagentov, ispol'zuemyh v vodopodgotovke / O. P. Petrosyan [i dr.] // Elektronnyy zhurnal: nauka, tehnika i obrazovanie. 2016. №. 1(5). S. 195–215. https://elibrary.ru/wnifgz
5. Vasil'ev, A. L. Sovremennye metody obezzarazhivaniya pit'evoy vody / A. L. Vasil'ev, A. S. Tarasov, L. D. Guseva // Privolzhskiy nauchnyy zhurnal. 2022. № 3(63). S. 83–89. https://elibrary.ru/exzsjc
6. Jefri, U. H. N. M. A systematic review on chlorine dioxide as a disinfectant / U. H. N. M. Jefri [et al.] // Journal of Medicine and Life. 2022. Vol. 15(3). R. 313. https://doi.org/10.25122/jml-2021-0180
7. Ofori, I. Chlorine dioxide oxidation of Escherichia coli in water – A study of the disinfection kinetics and mechanism / I. Ofori [et al.] // Journal of Environmental Science and Health, Part A. 2017. Vol. 52(7). R. 598–606. https://doi.org/10.1080/10934529.2017.1293993
8. Han, J. Low chlorine impurity might be beneficial in chlorine dioxide disinfection / J. Han [et al.] // Water research. 2021. Vol. 188. 116520. https://doi.org/10.1016/j.watres.2020.116520
9. Fokin, M. Gigiena dolzhna byt' polnoy! / M. Fokin // Molochnaya promyshlennost'. 2014. №. 10. S. 28–31. https://elibrary.ru/sujnwh
10. Al-Otoum, F. Disinfection by-products of chlorine dioxide (chlorite, chlorate, and trihalomethanes): Occurrence in drinking water in Qatar / F. Al-Otoum [et al.] // Chemosphere. 2016. Vol. 164. R. 649–656. https://doi.org/10.1016/j.chemosphere.2016.09.008
11. Liu, C. Enhanced chlorine dioxide decay in the presence of metal oxides: Relevance to drinking water distribution systems / C. Liu, U. Von Gunten, J. P. Croue // Environmental science & technology. 2013. Vol. 47(15). R. 8365–8372. https://doi.org/10.1021/es4015103
12. Wen, G. Inactivation of three genera of dominant fungal spores in groundwater using chlorine dioxide: Effectiveness, influencing factors, and mechanisms / G. Wen [et al.] // Water research. 2017. Vol. 125. R. 132–140. https://doi.org/10.1016/j.watres.2017.08.038
13. Wu, M. S. Inactivation of antibiotic-resistant bacteria by chlorine dioxide in soil and shifts in community composition / M. S. Wu, X. Xu // RSC advances. 2019. Vol. 19. R. 6526–6532. https://doi.org/10.1039/c8ra07997h
14. Ofori, I. Chlorine dioxide inactivation of Pseudomonas aeruginosa and Staphylococcus aureus in water: The kinetics and mechanism / I. Ofori [et al.] // Journal of ater process engineering. 2018. Vol. 26. R. 46–54. https://doi.org/10.1016/j.jwpe.2018.09.001
15. Petrenko, N. F. Dioksid hlora: primenenie v tehnologiyah vodopodgotovki / N. F. Petrenko, A. V. Mokienko. – Odessa: Optimum, 2005. – 486 s.
16. Copes, W. E. Activity of chlorine dioxide in a solution of ions and pH against Thielaviopsis basicola and Fusarium oxysporum / W. E. Copes, G. A. Chastaganer, R. L. Hummel // Plant disease. 2004. Vol. 88(2). R. 188–194. https://doi.org/10.1094/PDIS.2004.88.2.188
17. Zoffoli, J. P. Effectiveness of chlorine dioxide as influenced by concentration, pH, and exposure time on spore germination of Botrytis cinerea, Penicillium expansum and Rhizopus stolonifer / J. P. Zoffoli [et al.] // Latinoamerican Journal of Agricultural and Environmental Sciences. 2005. Vol. 32(3). R. 127–196. http://doi.org/10.7764/rcia.v32i3.1300
18. Han, J. Low chlorine impurity might be beneficial in chlorine dioxide disinfection / J. Han [et al.] // Water research. 2021. Vol. 188. 116520. https://doi.org/10.1016/j.watres.2020.116520
19. Yang, W. The synergistic effect of Escherichia coli inactivation by sequential disinfection with low level chlorine dioxide followed by free chlorine / W. Yang [et al.] // Journal of water and health. 2012. Vol. 10(4). R. 557–564. https://doi.org/10.2166/wh.2012.067