LACTIC ACID BACTERIA IN CHEESE PRODUCTION
Abstract and keywords
Abstract (English):
Starter cultures of lactic acid bacteria define the sensory profile of cheese, as well as its microbiological safety and shelf life. Under the current import restrictions, Russia needs efficient domestic starter strains with probiotic properties. Research in this sphere opens up prospects for new functional cheeses that combine conventional sensory properties with health benefits. The authors tested Enterococcus faecium, Lactobacillus acidophilus, L. plantarum, and Weissella thailandensis for starter culture potential. The highest antimicrobial activity against Escherichia coli belonged to L. plantarum (B-11264) and W. thailandensis (B-10412). E. faecium (B-4054) and L. acidophilus (B-2585) demonstrated strong acid-forming effects, which contributed to a decrease in pH. Their resistance to high NaCl concentrations was strain-specific: while 2–4% NaCl inhibited some cultures, 6.5% NaCl was able to inhibit them all. The biocompatibility test revealed no antagonism between the strains, which confirmed good consortia prospects. Strains B-4054, B-2585, and B-11264 demonstrated a reliable enzymatic potential and steady growth under the experimental conditions. In the future, they may provide a strategic alternative to imported probiotic starters. Research prospects involve optimization of cheese production technology by using these strains in microbial consortia.

Keywords:
lactic acid bacteria, acid-forming activity, antibiotic resistance, antimicrobial activity, Escherichia coli, starter microflora, metabolites
Text
Text (PDF): Read Download
References

1. Borodin, K. G. Srednesrochnyy prognoz razvitiya rossiyskogo rynka syra / K. G. Borodin // Nikonovskie chteniya. 2019. № 24. S. 199–202. https://elibrary.ru/yokdtm

2. Prosekov, A. Y. Antioxidant and antimicrobial activity of bacteriocinproducing strains of lactic acid bacteria isolated from the human gastrointestinal tract / A. Y. Prosekov [et al.] // Progress in nutrition. 2017. Vol. 19(1). P 67–80. https://doi.org/10.23751/pn.v19i1.5147

3. Zimina, M. I. Determination of the intensity of bacteriocin production by strains of lactic acid bacteria and their effectiveness / M. I. Zimina [et al.] // Foods and Raw Materials. 2017. Vol. 5(1). P. 108–117. https://doi.org/10.21179/2308-4057-2017-1-108-117

4. Martirosyan, V. V. Razrabotka rezhimov prigotovleniya koncentrirovannoy molochnokisloy zakvaski dlya mul'tizernovyh hlebobulochnyh izdeliy / V. V. Martirosyan [i dr.] // Pischevaya promyshlennost'. 2024. № 7. S. 86–89. https://doi.org/10.52653/PPI.2024.7.7.020; https://elibrary.ru/egrlvp

5. Kazanceva, E. G. Rynki mikroingredientov i ih vliyanie na ustoychivost' prodovol'stvennyh sistem / E. G. Kazanceva, I. I. Lyamkin // Tehnika i tehnologiya pischevyh proizvodstv. 2023. T. 53, № 1. S. 202–216. https://doi.org/10.21603/2074-9414-2023-1-2424; https://elibrary.ru/hocfyj

6. Vesnina, A. D. Poluchenie probioticheskogo konsorciuma na osnove vydelennyh iz korov'ego moloka shtammov / A. D. Vesnina [i dr.] // Molochnohozyaystvennyy vestnik. 2021. № 2. S. 107–122. https://doi.org/10.52231/2225-4269_2021_2_107; https://elibrary.ru/yxajjk

7. Suhodolec, V. V. Molochnokislye enterokokki Enterococcus faecium i Enterococcus durans: raznoobrazie v posledovatel'nostyah nukleotidov v genah 16S rRNK / V. V. Suhodolec [i dr.] // Mikrobiologiya. 2005. T. 74, № 6. S. 810–815. https://elibrary.ru/hsjjwj

8. Anjum, N. Lactobacillus acidophilus: characterization of the species and application in food production / N. Anjum [et al.] // Critical reviews in food science and nutrition. 2014. Vol. 54(9). P. 1241–1251. https://doi.org/10.1080/10408398.2011.621169

9. Seddik, H. A. Lactobacillus plantarum and its probiotic and food potentialities / H. A. Seddik [et al.] // Probiotics and antimicrobial proteins. 2017. Vol. 9(2). P. 111–122. https://doi.org/10.1007/s12602-017-9264-z

10. Ahmed, S. The Weissella genus: Clinically treatable bacteria with antimicrobial/probiotic effects on inflammation and cancer / S. Ahmed [et al.] // Microorganisms. 2022. Vol. 10(12). 2427. https://doi.org/10.3390/microorganisms10122427

11. Froböse, N. J. Gram staining: A comparison of two automated systems and manual staining / N. J. Froböse [et al.] // Journal of Clinical Microbiology. 2020. Vol. 58(12). e01914-20. https://doi.org/10.1128/JCM.01914-20

12. Duche, R. T. Antibiotic resistance in potential probiotic lactic acid bacteria of fermented foods and human origin from Nigeria / R. T. Duche [et al.] // BMC Microbiology. 2023. Vol. 23. 142. https://doi.org/10.1186/s12866-023-02883-0

13. Chaplygina, O. S. Metody ocenki ostatochnogo kolichestva antibiotikov gruppy amfenikoly v moloke i molochnoy produkcii / O. S. Chaplygina, A. Yu. Prosekov, A. D. Vesnina // Tehnika i tehnologiya pischevyh proizvodstv. 2022. T. 52, № 1. S. 79–88. https://doi.org/10.21603/2074-9414-2022-1-79-88; https://elibrary.ru/johifz

14. Navrátilova, P. Effect of Cephalosporin Antibiotics on the Activity of Yoghurt Cultures / P. Navrátilova [et al.] // Foods. 2022. Vol. 11. 2751. https://doi.org/10.3390/foods11182751

15. Babich, O. O. Structure and properties of antimicrobial peptides produced by antagonist microorganisms isolated from Siberian natural objects / O. O. Babich [et al.] // Foods and Raw Materials. 2022. Vol. 10(1). P. 27–39. http://doi.org/10.21603/2308-4057-2022-1-27-39

16. Teixeira, G. G. The Weissella genus in the food industry: A review / C. G. Teixeira [et al.] // Research, Society and Development. 2021. Vol. 10(5). e8310514557. http://dx.doi.org/10.33448/rsd-v10i5.14557

17. Mitrea, L. Inhibitory potential of Lactobacillus plantarum on Escherichia coli / L. Mitrea [et al.] // Bulletin of University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca. 2017. Vol. 74(2). P. 99–101. https://doi.org/10.15835/buasvmcn-fst:0031

18. Khushboo. Characterization and selection of probiotic lactic acid bacteria from different dietary sources for development of functional foods / Khushboo, A. Karnwal, T. Malik // Frontiers in Microbiology. 2023. Vol. 14. 1170725. https://doi.org/10.3389/fmicb.2023.1170725

19. Naamala, J. Effect of NaCl stress on exoproteome profiles of Bacillus amyloliquefaciens EB2003A and Lactobacillus helveticus EL2006H / J. Naamala, S. Subramanian, L.A. Msimbira, D. L. Smith // Frontiers in Microbiology. 2023. Vol. 14. 1206152. https://doi.org/10.3389/fmicb.2023.1206152

Login or Create
* Forgot password?